Upload folder using huggingface_hub
Browse files- README.md +0 -0
- run_compression.py +132 -0
README.md
ADDED
|
File without changes
|
run_compression.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Adapted from https://github.com/vllm-project/llm-compressor/blob/e7c6ef485c3ae764bfea0b2eb5c3c41fedac1353/examples/multimodal_vision/qwen_2_5_vl_example.py
|
| 2 |
+
|
| 3 |
+
import base64
|
| 4 |
+
from io import BytesIO
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
from llmcompressor.modifiers.quantization import GPTQModifier
|
| 10 |
+
from llmcompressor.transformers import oneshot
|
| 11 |
+
from qwen_vl_utils import process_vision_info
|
| 12 |
+
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
|
| 13 |
+
|
| 14 |
+
# Load model.
|
| 15 |
+
model_id = "yujiepan/ui-tars-1.5-7B-bf16"
|
| 16 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
| 17 |
+
model_id,
|
| 18 |
+
device_map="auto",
|
| 19 |
+
torch_dtype="auto",
|
| 20 |
+
)
|
| 21 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
| 22 |
+
|
| 23 |
+
# Oneshot arguments
|
| 24 |
+
DATASET_ID = "lmms-lab/flickr30k"
|
| 25 |
+
DATASET_SPLIT = {"calibration": "test[:512]"}
|
| 26 |
+
DATASET_SPLIT = "test[:512]" # changed to this
|
| 27 |
+
NUM_CALIBRATION_SAMPLES = 512
|
| 28 |
+
MAX_SEQUENCE_LENGTH = 2048
|
| 29 |
+
|
| 30 |
+
# Load dataset and preprocess.
|
| 31 |
+
ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
|
| 32 |
+
ds = ds.shuffle(seed=42)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# Apply chat template and tokenize inputs.
|
| 36 |
+
def preprocess_and_tokenize(example):
|
| 37 |
+
# preprocess
|
| 38 |
+
buffered = BytesIO()
|
| 39 |
+
example["image"].save(buffered, format="PNG")
|
| 40 |
+
encoded_image = base64.b64encode(buffered.getvalue())
|
| 41 |
+
encoded_image_text = encoded_image.decode("utf-8")
|
| 42 |
+
base64_qwen = f"data:image;base64,{encoded_image_text}"
|
| 43 |
+
messages = [
|
| 44 |
+
{
|
| 45 |
+
"role": "user",
|
| 46 |
+
"content": [
|
| 47 |
+
{"type": "image", "image": base64_qwen},
|
| 48 |
+
{"type": "text", "text": "What does the image show?"},
|
| 49 |
+
],
|
| 50 |
+
}
|
| 51 |
+
]
|
| 52 |
+
text = processor.apply_chat_template(
|
| 53 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 54 |
+
)
|
| 55 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 56 |
+
|
| 57 |
+
# tokenize
|
| 58 |
+
return processor(
|
| 59 |
+
text=[text],
|
| 60 |
+
images=image_inputs,
|
| 61 |
+
videos=video_inputs,
|
| 62 |
+
padding=False,
|
| 63 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
| 64 |
+
truncation=True,
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
ds = ds.map(preprocess_and_tokenize, remove_columns=ds.column_names)
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
# Define a oneshot data collator for multimodal inputs.
|
| 72 |
+
def data_collator(batch):
|
| 73 |
+
assert len(batch) == 1
|
| 74 |
+
return {key: torch.tensor(value) for key, value in batch[0].items()}
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Recipe
|
| 78 |
+
recipe = [
|
| 79 |
+
GPTQModifier(
|
| 80 |
+
targets="Linear",
|
| 81 |
+
scheme="W4A16",
|
| 82 |
+
sequential_targets=["Qwen2_5_VLDecoderLayer"],
|
| 83 |
+
ignore=["lm_head", "re:visual.*"],
|
| 84 |
+
),
|
| 85 |
+
]
|
| 86 |
+
|
| 87 |
+
# Perform oneshot
|
| 88 |
+
oneshot(
|
| 89 |
+
model=model,
|
| 90 |
+
tokenizer=model_id,
|
| 91 |
+
dataset=ds,
|
| 92 |
+
recipe=recipe,
|
| 93 |
+
max_seq_length=MAX_SEQUENCE_LENGTH,
|
| 94 |
+
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
|
| 95 |
+
trust_remote_code_model=True,
|
| 96 |
+
data_collator=data_collator,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Confirm generations of the quantized model look sane.
|
| 100 |
+
print("========== SAMPLE GENERATION ==============")
|
| 101 |
+
messages = [
|
| 102 |
+
{
|
| 103 |
+
"role": "user",
|
| 104 |
+
"content": [
|
| 105 |
+
{
|
| 106 |
+
"type": "image",
|
| 107 |
+
"image": "http://images.cocodataset.org/train2017/000000231895.jpg",
|
| 108 |
+
},
|
| 109 |
+
{"type": "text", "text": "Please describe the animal in this image\n"},
|
| 110 |
+
],
|
| 111 |
+
}
|
| 112 |
+
]
|
| 113 |
+
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
|
| 114 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 115 |
+
inputs = processor(
|
| 116 |
+
text=[prompt],
|
| 117 |
+
images=image_inputs,
|
| 118 |
+
videos=video_inputs,
|
| 119 |
+
padding=False,
|
| 120 |
+
max_length=MAX_SEQUENCE_LENGTH,
|
| 121 |
+
truncation=True,
|
| 122 |
+
return_tensors="pt",
|
| 123 |
+
).to("cuda")
|
| 124 |
+
output = model.generate(**inputs, max_new_tokens=100)
|
| 125 |
+
print(processor.decode(output[0], skip_special_tokens=True))
|
| 126 |
+
print("==========================================")
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# Save to disk compressed.
|
| 130 |
+
SAVE_DIR = model_id.split("/")[1] + "-GPTQ-W4A16g128"
|
| 131 |
+
model.save_pretrained(SAVE_DIR, save_compressed=True)
|
| 132 |
+
processor.save_pretrained(SAVE_DIR)
|