yujiepan commited on
Commit
5857351
·
verified ·
1 Parent(s): 243af2b

Upload folder using huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +0 -0
  2. run_compression.py +132 -0
README.md ADDED
File without changes
run_compression.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/vllm-project/llm-compressor/blob/e7c6ef485c3ae764bfea0b2eb5c3c41fedac1353/examples/multimodal_vision/qwen_2_5_vl_example.py
2
+
3
+ import base64
4
+ from io import BytesIO
5
+
6
+ import torch
7
+
8
+ from datasets import load_dataset
9
+ from llmcompressor.modifiers.quantization import GPTQModifier
10
+ from llmcompressor.transformers import oneshot
11
+ from qwen_vl_utils import process_vision_info
12
+ from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
13
+
14
+ # Load model.
15
+ model_id = "yujiepan/ui-tars-1.5-7B-bf16"
16
+ model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
17
+ model_id,
18
+ device_map="auto",
19
+ torch_dtype="auto",
20
+ )
21
+ processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
22
+
23
+ # Oneshot arguments
24
+ DATASET_ID = "lmms-lab/flickr30k"
25
+ DATASET_SPLIT = {"calibration": "test[:512]"}
26
+ DATASET_SPLIT = "test[:512]" # changed to this
27
+ NUM_CALIBRATION_SAMPLES = 512
28
+ MAX_SEQUENCE_LENGTH = 2048
29
+
30
+ # Load dataset and preprocess.
31
+ ds = load_dataset(DATASET_ID, split=DATASET_SPLIT)
32
+ ds = ds.shuffle(seed=42)
33
+
34
+
35
+ # Apply chat template and tokenize inputs.
36
+ def preprocess_and_tokenize(example):
37
+ # preprocess
38
+ buffered = BytesIO()
39
+ example["image"].save(buffered, format="PNG")
40
+ encoded_image = base64.b64encode(buffered.getvalue())
41
+ encoded_image_text = encoded_image.decode("utf-8")
42
+ base64_qwen = f"data:image;base64,{encoded_image_text}"
43
+ messages = [
44
+ {
45
+ "role": "user",
46
+ "content": [
47
+ {"type": "image", "image": base64_qwen},
48
+ {"type": "text", "text": "What does the image show?"},
49
+ ],
50
+ }
51
+ ]
52
+ text = processor.apply_chat_template(
53
+ messages, tokenize=False, add_generation_prompt=True
54
+ )
55
+ image_inputs, video_inputs = process_vision_info(messages)
56
+
57
+ # tokenize
58
+ return processor(
59
+ text=[text],
60
+ images=image_inputs,
61
+ videos=video_inputs,
62
+ padding=False,
63
+ max_length=MAX_SEQUENCE_LENGTH,
64
+ truncation=True,
65
+ )
66
+
67
+
68
+ ds = ds.map(preprocess_and_tokenize, remove_columns=ds.column_names)
69
+
70
+
71
+ # Define a oneshot data collator for multimodal inputs.
72
+ def data_collator(batch):
73
+ assert len(batch) == 1
74
+ return {key: torch.tensor(value) for key, value in batch[0].items()}
75
+
76
+
77
+ # Recipe
78
+ recipe = [
79
+ GPTQModifier(
80
+ targets="Linear",
81
+ scheme="W4A16",
82
+ sequential_targets=["Qwen2_5_VLDecoderLayer"],
83
+ ignore=["lm_head", "re:visual.*"],
84
+ ),
85
+ ]
86
+
87
+ # Perform oneshot
88
+ oneshot(
89
+ model=model,
90
+ tokenizer=model_id,
91
+ dataset=ds,
92
+ recipe=recipe,
93
+ max_seq_length=MAX_SEQUENCE_LENGTH,
94
+ num_calibration_samples=NUM_CALIBRATION_SAMPLES,
95
+ trust_remote_code_model=True,
96
+ data_collator=data_collator,
97
+ )
98
+
99
+ # Confirm generations of the quantized model look sane.
100
+ print("========== SAMPLE GENERATION ==============")
101
+ messages = [
102
+ {
103
+ "role": "user",
104
+ "content": [
105
+ {
106
+ "type": "image",
107
+ "image": "http://images.cocodataset.org/train2017/000000231895.jpg",
108
+ },
109
+ {"type": "text", "text": "Please describe the animal in this image\n"},
110
+ ],
111
+ }
112
+ ]
113
+ prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
114
+ image_inputs, video_inputs = process_vision_info(messages)
115
+ inputs = processor(
116
+ text=[prompt],
117
+ images=image_inputs,
118
+ videos=video_inputs,
119
+ padding=False,
120
+ max_length=MAX_SEQUENCE_LENGTH,
121
+ truncation=True,
122
+ return_tensors="pt",
123
+ ).to("cuda")
124
+ output = model.generate(**inputs, max_new_tokens=100)
125
+ print(processor.decode(output[0], skip_special_tokens=True))
126
+ print("==========================================")
127
+
128
+
129
+ # Save to disk compressed.
130
+ SAVE_DIR = model_id.split("/")[1] + "-GPTQ-W4A16g128"
131
+ model.save_pretrained(SAVE_DIR, save_compressed=True)
132
+ processor.save_pretrained(SAVE_DIR)