# Adapted from https://github.com/vllm-project/llm-compressor/blob/e7c6ef485c3ae764bfea0b2eb5c3c41fedac1353/examples/multimodal_vision/qwen_2_5_vl_example.py import base64 from io import BytesIO import torch from datasets import load_dataset from llmcompressor.modifiers.quantization import GPTQModifier from llmcompressor.transformers import oneshot from qwen_vl_utils import process_vision_info from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration # Load model. model_id = "yujiepan/ui-tars-1.5-7B-bf16" model = Qwen2_5_VLForConditionalGeneration.from_pretrained( model_id, device_map="auto", torch_dtype="auto", ) processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) # Oneshot arguments DATASET_ID = "lmms-lab/flickr30k" DATASET_SPLIT = {"calibration": "test[:512]"} DATASET_SPLIT = "test[:512]" # changed to this NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42) # Apply chat template and tokenize inputs. def preprocess_and_tokenize(example): # preprocess buffered = BytesIO() example["image"].save(buffered, format="PNG") encoded_image = base64.b64encode(buffered.getvalue()) encoded_image_text = encoded_image.decode("utf-8") base64_qwen = f"data:image;base64,{encoded_image_text}" messages = [ { "role": "user", "content": [ {"type": "image", "image": base64_qwen}, {"type": "text", "text": "What does the image show?"}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) # tokenize return processor( text=[text], images=image_inputs, videos=video_inputs, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, ) ds = ds.map(preprocess_and_tokenize, remove_columns=ds.column_names) # Define a oneshot data collator for multimodal inputs. def data_collator(batch): assert len(batch) == 1 return {key: torch.tensor(value) for key, value in batch[0].items()} # Recipe recipe = [ GPTQModifier( targets="Linear", scheme="W4A16", sequential_targets=["Qwen2_5_VLDecoderLayer"], ignore=["lm_head", "re:visual.*"], ), ] # Perform oneshot oneshot( model=model, tokenizer=model_id, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, data_collator=data_collator, ) # Confirm generations of the quantized model look sane. print("========== SAMPLE GENERATION ==============") messages = [ { "role": "user", "content": [ { "type": "image", "image": "http://images.cocodataset.org/train2017/000000231895.jpg", }, {"type": "text", "text": "Please describe the animal in this image\n"}, ], } ] prompt = processor.apply_chat_template(messages, add_generation_prompt=True) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[prompt], images=image_inputs, videos=video_inputs, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, return_tensors="pt", ).to("cuda") output = model.generate(**inputs, max_new_tokens=100) print(processor.decode(output[0], skip_special_tokens=True)) print("==========================================") # Save to disk compressed. SAVE_DIR = model_id.split("/")[1] + "-GPTQ-W4A16g128" model.save_pretrained(SAVE_DIR, save_compressed=True) processor.save_pretrained(SAVE_DIR)