Yuwei Sun
commited on
Commit
·
d7774e6
1
Parent(s):
8f2dd3f
Upload FedKA-Digit-Five.ipynb
Browse files- FedKA-Digit-Five.ipynb +540 -0
FedKA-Digit-Five.ipynb
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {
|
6 |
+
"id": "LcO6E1lNBh1P"
|
7 |
+
},
|
8 |
+
"source": [
|
9 |
+
"## 1. Import necessary packages"
|
10 |
+
]
|
11 |
+
},
|
12 |
+
{
|
13 |
+
"cell_type": "code",
|
14 |
+
"execution_count": null,
|
15 |
+
"metadata": {
|
16 |
+
"id": "dBaDYH8WBh1U"
|
17 |
+
},
|
18 |
+
"outputs": [],
|
19 |
+
"source": [
|
20 |
+
"import numpy as np\n",
|
21 |
+
"import tensorflow as tf\n",
|
22 |
+
"import scipy.io\n",
|
23 |
+
"from torch.utils.data import TensorDataset\n",
|
24 |
+
"from torch.utils.data import DataLoader\n",
|
25 |
+
"import torch\n",
|
26 |
+
"import matplotlib.pyplot as plt\n",
|
27 |
+
"import random\n",
|
28 |
+
"import os\n",
|
29 |
+
"import torch.backends.cudnn as cudnn\n",
|
30 |
+
"import torch.optim as optim\n",
|
31 |
+
"import torch.utils.data\n",
|
32 |
+
"from torchvision import datasets\n",
|
33 |
+
"from torchvision import transforms\n",
|
34 |
+
"import torch.nn as nn\n",
|
35 |
+
"from torch.autograd import Function\n",
|
36 |
+
"\n",
|
37 |
+
"cudnn.benchmark = False\n",
|
38 |
+
"cudnn.deterministic = True\n",
|
39 |
+
"cuda = True\n",
|
40 |
+
"\n",
|
41 |
+
"lr = 3e-4\n",
|
42 |
+
"batch_size = 16\n",
|
43 |
+
"image_size = 28\n",
|
44 |
+
"n_epoch = 200\n",
|
45 |
+
"\n",
|
46 |
+
"def dataprocess(data, target):\n",
|
47 |
+
" data = torch.from_numpy(data).float()\n",
|
48 |
+
" target = torch.from_numpy(target).long() \n",
|
49 |
+
" dataset = TensorDataset(data, target)\n",
|
50 |
+
" trainloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
|
51 |
+
"\n",
|
52 |
+
" return trainloader"
|
53 |
+
]
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"cell_type": "markdown",
|
57 |
+
"metadata": {
|
58 |
+
"id": "8n9FMTyTBh1U"
|
59 |
+
},
|
60 |
+
"source": [
|
61 |
+
"## 2. Prepare the datasets for clients (source) and the cloud (target)"
|
62 |
+
]
|
63 |
+
},
|
64 |
+
{
|
65 |
+
"cell_type": "code",
|
66 |
+
"execution_count": null,
|
67 |
+
"metadata": {
|
68 |
+
"id": "Zocl_klGBh1V"
|
69 |
+
},
|
70 |
+
"outputs": [],
|
71 |
+
"source": [
|
72 |
+
"mat = scipy.io.loadmat('Digit-Five/mnist_data.mat')\n",
|
73 |
+
"data = np.transpose((np.array((tf.image.grayscale_to_rgb(tf.convert_to_tensor(mat['train_28'])))).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2))\n",
|
74 |
+
"target = np.argmax((mat['label_train']), axis = 1)\n",
|
75 |
+
"c1_mt = [data, target]\n",
|
76 |
+
"\n",
|
77 |
+
"mat = scipy.io.loadmat('Digit-Five/mnistm_with_label.mat')\n",
|
78 |
+
"data = np.transpose((np.array((tf.convert_to_tensor(mat['train']))).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2)) \n",
|
79 |
+
"target = np.argmax((mat['label_train']), axis = 1)\n",
|
80 |
+
"c2_mm =[data, target]\n",
|
81 |
+
"\n",
|
82 |
+
"mat = scipy.io.loadmat('Digit-Five/usps_28x28.mat')\n",
|
83 |
+
"data = np.transpose((np.array((tf.image.grayscale_to_rgb(tf.convert_to_tensor(mat['dataset'][0][0].reshape(-1,28,28,1))))).astype('float32')).reshape(-1,28,28,3), (0,3,1,2))\n",
|
84 |
+
"target = mat['dataset'][0][1].flatten()\n",
|
85 |
+
"c3_up = [data, target]\n",
|
86 |
+
"\n",
|
87 |
+
"mat = scipy.io.loadmat('Digit-Five/svhn_train_32x32.mat')\n",
|
88 |
+
"data = np.transpose((np.array((tf.image.resize(np.moveaxis(mat['X'], -1, 0), [28,28]) )).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2))\n",
|
89 |
+
"target = (mat['y']-1).flatten()\n",
|
90 |
+
"c4_sv = [data, target]\n",
|
91 |
+
"\n",
|
92 |
+
"mat = scipy.io.loadmat('Digit-Five/syn_number.mat')\n",
|
93 |
+
"data = np.transpose((np.array((tf.image.resize(mat['train_data'], [28,28]) )).astype('float32')/255.0).reshape(-1,28,28,3), (0,3,1,2)) \n",
|
94 |
+
"target = mat['train_label'].flatten()\n",
|
95 |
+
"c5_sy = [data, target]"
|
96 |
+
]
|
97 |
+
},
|
98 |
+
{
|
99 |
+
"cell_type": "code",
|
100 |
+
"execution_count": null,
|
101 |
+
"metadata": {
|
102 |
+
"id": "6uECrd2eBh1V"
|
103 |
+
},
|
104 |
+
"outputs": [],
|
105 |
+
"source": [
|
106 |
+
"c1 = dataprocess(c1_mt[0], c1_mt[1])\n",
|
107 |
+
"c2 = dataprocess(c2_mm[0], c2_mm[1])\n",
|
108 |
+
"c3 = dataprocess(c3_up[0], c3_up[1])\n",
|
109 |
+
"c4 = dataprocess(c4_sv[0], c4_sv[1])\n",
|
110 |
+
"c5 = dataprocess(c5_sy[0], c5_sy[1])\n",
|
111 |
+
"\n",
|
112 |
+
"data_all = [c1_mt[0],c2_mm[0], c3_up[0], c4_sv[0], c5_sy[0]]"
|
113 |
+
]
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"cell_type": "markdown",
|
117 |
+
"metadata": {
|
118 |
+
"id": "Th2GBdjoBh1X"
|
119 |
+
},
|
120 |
+
"source": [
|
121 |
+
"## 3. Define the MK-MMD loss (guassian kernel)"
|
122 |
+
]
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"cell_type": "code",
|
126 |
+
"execution_count": null,
|
127 |
+
"metadata": {
|
128 |
+
"id": "gjz5bZS0Bh1X"
|
129 |
+
},
|
130 |
+
"outputs": [],
|
131 |
+
"source": [
|
132 |
+
"class MMD_loss(nn.Module):\n",
|
133 |
+
" def __init__(self, kernel_mul = 2.0, kernel_num = 5):\n",
|
134 |
+
" super(MMD_loss, self).__init__()\n",
|
135 |
+
" self.kernel_num = kernel_num\n",
|
136 |
+
" self.kernel_mul = kernel_mul\n",
|
137 |
+
" self.fix_sigma = None\n",
|
138 |
+
" return\n",
|
139 |
+
"\n",
|
140 |
+
" def guassian_kernel(self, source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):\n",
|
141 |
+
" n_samples = int(source.size()[0])+int(target.size()[0])\n",
|
142 |
+
" total = torch.cat([source, target], dim=0)\n",
|
143 |
+
"\n",
|
144 |
+
" total0 = total.unsqueeze(0).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))\n",
|
145 |
+
" total1 = total.unsqueeze(1).expand(int(total.size(0)), int(total.size(0)), int(total.size(1)))\n",
|
146 |
+
" L2_distance = ((total0-total1)**2).sum(2) \n",
|
147 |
+
" if fix_sigma:\n",
|
148 |
+
" bandwidth = fix_sigma\n",
|
149 |
+
" else:\n",
|
150 |
+
" bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)\n",
|
151 |
+
" bandwidth /= kernel_mul ** (kernel_num // 2)\n",
|
152 |
+
" bandwidth_list = [bandwidth * (kernel_mul**i) for i in range(kernel_num)]\n",
|
153 |
+
" kernel_val = [torch.exp(-L2_distance / bandwidth_temp) for bandwidth_temp in bandwidth_list]\n",
|
154 |
+
" return sum(kernel_val)\n",
|
155 |
+
"\n",
|
156 |
+
" def forward(self, source, target):\n",
|
157 |
+
" batch_size = int(source.size()[0])\n",
|
158 |
+
" kernels = self.guassian_kernel(source, target, kernel_mul=self.kernel_mul, kernel_num=self.kernel_num, fix_sigma=self.fix_sigma)\n",
|
159 |
+
" XX = kernels[:batch_size, :batch_size]\n",
|
160 |
+
" YY = kernels[batch_size:, batch_size:]\n",
|
161 |
+
" XY = kernels[:batch_size, batch_size:]\n",
|
162 |
+
" YX = kernels[batch_size:, :batch_size]\n",
|
163 |
+
" loss = torch.mean(XX + YY - XY -YX)\n",
|
164 |
+
" return loss"
|
165 |
+
]
|
166 |
+
},
|
167 |
+
{
|
168 |
+
"cell_type": "markdown",
|
169 |
+
"metadata": {
|
170 |
+
"id": "bw4hooRKBh1Y"
|
171 |
+
},
|
172 |
+
"source": [
|
173 |
+
"## 4. Define the model architecture following the Reverse Layer"
|
174 |
+
]
|
175 |
+
},
|
176 |
+
{
|
177 |
+
"cell_type": "code",
|
178 |
+
"execution_count": null,
|
179 |
+
"metadata": {
|
180 |
+
"id": "_dH5urjaBh1Y"
|
181 |
+
},
|
182 |
+
"outputs": [],
|
183 |
+
"source": [
|
184 |
+
"class ReverseLayerF(Function):\n",
|
185 |
+
"\n",
|
186 |
+
" @staticmethod\n",
|
187 |
+
" def forward(ctx, x, alpha):\n",
|
188 |
+
" ctx.alpha = alpha\n",
|
189 |
+
"\n",
|
190 |
+
" return x.view_as(x)\n",
|
191 |
+
"\n",
|
192 |
+
" @staticmethod\n",
|
193 |
+
" def backward(ctx, grad_output):\n",
|
194 |
+
" output = grad_output.neg() * ctx.alpha\n",
|
195 |
+
"\n",
|
196 |
+
" return output, None\n",
|
197 |
+
"\n",
|
198 |
+
"class CNNModel(nn.Module):\n",
|
199 |
+
"\n",
|
200 |
+
" def __init__(self):\n",
|
201 |
+
" super(CNNModel, self).__init__()\n",
|
202 |
+
" self.feature = nn.Sequential()\n",
|
203 |
+
" self.feature.add_module('f_conv1', nn.Conv2d(3, 64, kernel_size=5))\n",
|
204 |
+
" self.feature.add_module('f_bn1', nn.BatchNorm2d(64))\n",
|
205 |
+
" self.feature.add_module('f_pool1', nn.MaxPool2d(2))\n",
|
206 |
+
" self.feature.add_module('f_relu1', nn.ReLU(True))\n",
|
207 |
+
" self.feature.add_module('f_conv2', nn.Conv2d(64, 50, kernel_size=5))\n",
|
208 |
+
" self.feature.add_module('f_bn2', nn.BatchNorm2d(50))\n",
|
209 |
+
" self.feature.add_module('f_drop1', nn.Dropout2d())\n",
|
210 |
+
" self.feature.add_module('f_pool2', nn.MaxPool2d(2))\n",
|
211 |
+
" self.feature.add_module('f_relu2', nn.ReLU(True))\n",
|
212 |
+
" \n",
|
213 |
+
" self.class_classifier = nn.Sequential()\n",
|
214 |
+
" self.class_classifier.add_module('c_fc1', nn.Linear(50 * 4 * 4, 100))\n",
|
215 |
+
" self.class_classifier.add_module('c_bn1', nn.BatchNorm1d(100))\n",
|
216 |
+
" self.class_classifier.add_module('c_relu1', nn.ReLU(True))\n",
|
217 |
+
" self.class_classifier.add_module('c_fc3', nn.Linear(100, 10))\n",
|
218 |
+
" self.class_classifier.add_module('c_softmax', nn.LogSoftmax())\n",
|
219 |
+
" \n",
|
220 |
+
" self.domain_classifier = nn.Sequential()\n",
|
221 |
+
" self.domain_classifier.add_module('d_fc1', nn.Linear(50 * 4 * 4, 100))\n",
|
222 |
+
" self.domain_classifier.add_module('d_bn1', nn.BatchNorm1d(100))\n",
|
223 |
+
" self.domain_classifier.add_module('d_relu1', nn.ReLU(True))\n",
|
224 |
+
" self.domain_classifier.add_module('d_fc2', nn.Linear(100, 2))\n",
|
225 |
+
" self.domain_classifier.add_module('d_softmax', nn.LogSoftmax(dim=1))\n",
|
226 |
+
"\n",
|
227 |
+
" def forward(self, input_data, alpha):\n",
|
228 |
+
" input_data = input_data.expand(input_data.data.shape[0], 3, 28, 28)\n",
|
229 |
+
" feature = self.feature(input_data)\n",
|
230 |
+
" feature = feature.view(-1, 50 * 4 * 4)\n",
|
231 |
+
" reverse_feature = ReverseLayerF.apply(feature, alpha)\n",
|
232 |
+
" class_output = self.class_classifier(feature)\n",
|
233 |
+
" domain_output = self.domain_classifier(reverse_feature)\n",
|
234 |
+
"\n",
|
235 |
+
" return class_output, domain_output"
|
236 |
+
]
|
237 |
+
},
|
238 |
+
{
|
239 |
+
"cell_type": "markdown",
|
240 |
+
"metadata": {
|
241 |
+
"id": "YAZ2eOkbBh1Y"
|
242 |
+
},
|
243 |
+
"source": [
|
244 |
+
"## 5. Federated Knowledge Alignment (FedKA) "
|
245 |
+
]
|
246 |
+
},
|
247 |
+
{
|
248 |
+
"cell_type": "code",
|
249 |
+
"execution_count": null,
|
250 |
+
"metadata": {
|
251 |
+
"id": "Su0klLOiBh1Z",
|
252 |
+
"scrolled": true
|
253 |
+
},
|
254 |
+
"outputs": [],
|
255 |
+
"source": [
|
256 |
+
"from tqdm import notebook\n",
|
257 |
+
"\n",
|
258 |
+
"def run(method, voting):\n",
|
259 |
+
" learned_models = []\n",
|
260 |
+
" global_net = CNNModel()\n",
|
261 |
+
" global_optimizer = optim.Adam(global_net.parameters(), lr=lr) \n",
|
262 |
+
" clients = []\n",
|
263 |
+
" optims = []\n",
|
264 |
+
" client_num = 4\n",
|
265 |
+
" for n in range(client_num):\n",
|
266 |
+
" local_net = CNNModel()\n",
|
267 |
+
" local_optimizer = optim.Adam(local_net.parameters(), lr=lr) \n",
|
268 |
+
" clients.append(local_net)\n",
|
269 |
+
" optims.append(local_optimizer)\n",
|
270 |
+
"\n",
|
271 |
+
" loss_class = torch.nn.NLLLoss()\n",
|
272 |
+
" loss_domain = torch.nn.NLLLoss()\n",
|
273 |
+
" loss_class = loss_class.cuda()\n",
|
274 |
+
" loss_domain = loss_domain.cuda()\n",
|
275 |
+
" loss_mmd = MMD_loss() \n",
|
276 |
+
" \n",
|
277 |
+
" acc_list = []\n",
|
278 |
+
" for epoch in notebook.tqdm(range(n_epoch)):\n",
|
279 |
+
" print(f\"===========Round {epoch} ===========\")\n",
|
280 |
+
" if cuda:\n",
|
281 |
+
" global_net =global_net.cuda()\n",
|
282 |
+
"\n",
|
283 |
+
" data_target_iter = iter(cloud_dataset[0]) \n",
|
284 |
+
" loss_epoch = []\n",
|
285 |
+
" \n",
|
286 |
+
" acc = []\n",
|
287 |
+
" for n in range(client_num):\n",
|
288 |
+
" # Enumerating batches from the dataloader provides a random selection of 512 samples every round.\n",
|
289 |
+
" for i, (s_img, s_label) in enumerate(clients_datasets[n]): \n",
|
290 |
+
" len_dataloader = 32\n",
|
291 |
+
" if i > 31: \n",
|
292 |
+
" break\n",
|
293 |
+
"\n",
|
294 |
+
" p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader\n",
|
295 |
+
" alpha = 2. / (1. + np.exp(-5 * p)) - 1\n",
|
296 |
+
"\n",
|
297 |
+
" optims[n].zero_grad()\n",
|
298 |
+
" batch_size = len(s_label)\n",
|
299 |
+
"\n",
|
300 |
+
" input_img = torch.FloatTensor(batch_size, 3, image_size, image_size)\n",
|
301 |
+
" class_label = torch.LongTensor(batch_size)\n",
|
302 |
+
" domain_label = torch.zeros(batch_size)\n",
|
303 |
+
" domain_label = domain_label.long()\n",
|
304 |
+
"\n",
|
305 |
+
" if cuda:\n",
|
306 |
+
" clients[n] = clients[n].cuda()\n",
|
307 |
+
" s_img = s_img.cuda()\n",
|
308 |
+
" s_label = s_label.cuda()\n",
|
309 |
+
" input_img = input_img.cuda()\n",
|
310 |
+
" class_label = class_label.cuda()\n",
|
311 |
+
" domain_label = domain_label.cuda()\n",
|
312 |
+
"\n",
|
313 |
+
" input_img.resize_as_(s_img).copy_(s_img)\n",
|
314 |
+
" class_label.resize_as_(s_label).copy_(s_label)\n",
|
315 |
+
" class_output, domain_output = clients[n](input_data=input_img, alpha=alpha)\n",
|
316 |
+
"\n",
|
317 |
+
" err_s_label = loss_class(class_output, class_label)\n",
|
318 |
+
" err_s_domain = loss_domain(domain_output, domain_label)\n",
|
319 |
+
"\n",
|
320 |
+
" t_img, _ = data_target_iter.next()\n",
|
321 |
+
" batch_size = len(t_img)\n",
|
322 |
+
" input_img = torch.FloatTensor(batch_size, 3, image_size, image_size)\n",
|
323 |
+
" domain_label = torch.ones(batch_size)\n",
|
324 |
+
" domain_label = domain_label.long()\n",
|
325 |
+
"\n",
|
326 |
+
" if cuda:\n",
|
327 |
+
" t_img = t_img.cuda()\n",
|
328 |
+
" input_img = input_img.cuda()\n",
|
329 |
+
" domain_label = domain_label.cuda()\n",
|
330 |
+
"\n",
|
331 |
+
" input_img.resize_as_(t_img).copy_(t_img)\n",
|
332 |
+
"\n",
|
333 |
+
" _, domain_output = clients[n](input_data=input_img, alpha=alpha)\n",
|
334 |
+
" err_t_domain = loss_domain(domain_output, domain_label)\n",
|
335 |
+
"\n",
|
336 |
+
" if method == 0 or method == 3:\n",
|
337 |
+
" err = err_s_label\n",
|
338 |
+
" else:\n",
|
339 |
+
" err = err_s_label + err_s_domain + err_t_domain\n",
|
340 |
+
"\n",
|
341 |
+
" err.backward()\n",
|
342 |
+
" optims[n].step()\n",
|
343 |
+
" \n",
|
344 |
+
" # mmd loss\n",
|
345 |
+
" mmd_loss_total = 0\n",
|
346 |
+
" for i, (s_img, s_label) in enumerate(clients_datasets[n]): \n",
|
347 |
+
" len_dataloader = 32\n",
|
348 |
+
" if i > 31: \n",
|
349 |
+
" break\n",
|
350 |
+
"\n",
|
351 |
+
" p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader\n",
|
352 |
+
" alpha = 2. / (1. + np.exp(-5* p)) - 1\n",
|
353 |
+
" batch_size = len(s_label)\n",
|
354 |
+
" t_img, _ = data_target_iter.next()\n",
|
355 |
+
" s_img = s_img.cuda()\n",
|
356 |
+
" t_img = t_img.cuda()\n",
|
357 |
+
"\n",
|
358 |
+
" hidden_c = clients[n].feature(s_img).reshape(batch_size, -1)\n",
|
359 |
+
" hidden_avg = global_net.feature(t_img).reshape(batch_size, -1)\n",
|
360 |
+
" mmd_loss = loss_mmd(hidden_c, hidden_avg)\n",
|
361 |
+
" mmd_loss_total =+mmd_loss*alpha\n",
|
362 |
+
" \n",
|
363 |
+
" if method == 2 or method == 3:\n",
|
364 |
+
" if (i+1) % 8 == 0:\n",
|
365 |
+
" optims[n].zero_grad()\n",
|
366 |
+
" err_mmd = mmd_loss_total/8\n",
|
367 |
+
" err_mmd.backward()\n",
|
368 |
+
" optims[n].step()\n",
|
369 |
+
" mmd_loss_total = 0 \n",
|
370 |
+
" \n",
|
371 |
+
" # FedAvg\n",
|
372 |
+
" global_sd = global_net.state_dict()\n",
|
373 |
+
" for key in global_sd:\n",
|
374 |
+
" global_sd[key] = torch.sum(torch.stack([model.state_dict()[key] for m, model in enumerate(clients)]), axis = 0)/client_num\n",
|
375 |
+
" # update the global model\n",
|
376 |
+
" global_net.load_state_dict(global_sd) \n",
|
377 |
+
" \n",
|
378 |
+
" \n",
|
379 |
+
" if voting:\n",
|
380 |
+
" total = 0\n",
|
381 |
+
" num_correct = 0\n",
|
382 |
+
" for i, (images, labels) in enumerate(cloud_dataset[0]):\n",
|
383 |
+
" len_dataloader = 128\n",
|
384 |
+
" if i > 127: \n",
|
385 |
+
" break\n",
|
386 |
+
"\n",
|
387 |
+
" p = float(i + epoch * len_dataloader) / n_epoch / len_dataloader\n",
|
388 |
+
" alpha = 2. / (1. + np.exp(-5* p)) - 1\n",
|
389 |
+
"\n",
|
390 |
+
" images =images.cuda()\n",
|
391 |
+
" labels = labels.cuda()\n",
|
392 |
+
" global_optimizer.zero_grad()\n",
|
393 |
+
" class_output, _ = global_net(images, 0)\n",
|
394 |
+
"\n",
|
395 |
+
" votes = []\n",
|
396 |
+
" for n in range(client_num):\n",
|
397 |
+
" clients[n] = clients[n].cuda()\n",
|
398 |
+
" output,_ = clients[n](images, 0)\n",
|
399 |
+
" pred = torch.argmax(output, 1)\n",
|
400 |
+
" votes.append(pred)\n",
|
401 |
+
"\n",
|
402 |
+
" class_label = torch.Tensor([int(max(set(batch), key = batch.count).cpu().data.numpy()) for batch in [list(i) for i in zip(*votes)]]).to(torch.int64)\n",
|
403 |
+
" class_label = class_label.cuda()\n",
|
404 |
+
"\n",
|
405 |
+
" total += labels.size(0)\n",
|
406 |
+
" num_correct += (class_label == labels).sum().item()\n",
|
407 |
+
"\n",
|
408 |
+
" err = loss_class(class_output, class_label)*alpha\n",
|
409 |
+
" err.backward()\n",
|
410 |
+
" global_optimizer.step()\n",
|
411 |
+
" \n",
|
412 |
+
" print(f'Voting accuracy: {num_correct * 100 / total}% Adoption rate: {alpha*100}%')\n",
|
413 |
+
" \n",
|
414 |
+
" \n",
|
415 |
+
" # Evaluation every round \n",
|
416 |
+
" # Target task \n",
|
417 |
+
" with torch.no_grad():\n",
|
418 |
+
" num_correct = 0\n",
|
419 |
+
" total = 0\n",
|
420 |
+
"\n",
|
421 |
+
" for i, (images, labels) in enumerate(cloud_dataset[0]):\n",
|
422 |
+
" if i > 312:\n",
|
423 |
+
" break\n",
|
424 |
+
" \n",
|
425 |
+
" if cuda:\n",
|
426 |
+
" global_net = global_net.cuda()\n",
|
427 |
+
" images =images.cuda()\n",
|
428 |
+
" labels = labels.cuda()\n",
|
429 |
+
" \n",
|
430 |
+
" output,_ = global_net(images, 0)\n",
|
431 |
+
" pred = torch.argmax(output, 1)\n",
|
432 |
+
" total += labels.size(0)\n",
|
433 |
+
" num_correct += (pred == labels).sum().item()\n",
|
434 |
+
" \n",
|
435 |
+
" print(f'Global: Accuracy of the model on {total} test images: {num_correct * 100 / total}% \\n')\n",
|
436 |
+
" acc.append(num_correct * 100 / total)\n",
|
437 |
+
" \n",
|
438 |
+
" acc_list.append(acc)\n",
|
439 |
+
"\n",
|
440 |
+
" for n in range(client_num):\n",
|
441 |
+
" clients[n].load_state_dict(global_sd)\n",
|
442 |
+
"\n",
|
443 |
+
" return acc_list"
|
444 |
+
]
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "markdown",
|
448 |
+
"metadata": {
|
449 |
+
"id": "aS8nJ2sdBh1a"
|
450 |
+
},
|
451 |
+
"source": [
|
452 |
+
"## 6. Run experiments\n",
|
453 |
+
"\n",
|
454 |
+
"### Method 0: Source Only\n",
|
455 |
+
"\n",
|
456 |
+
"### Method 1: $f$-DANN\n",
|
457 |
+
"\n",
|
458 |
+
"### Method 2: FedKA"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"execution_count": null,
|
464 |
+
"metadata": {
|
465 |
+
"id": "eeqIdMAXBh1b",
|
466 |
+
"outputId": "38dd4827-bd80-4f6d-9112-82dda29ab28c"
|
467 |
+
},
|
468 |
+
"outputs": [],
|
469 |
+
"source": [
|
470 |
+
"import matplotlib.pyplot as plt\n",
|
471 |
+
"\n",
|
472 |
+
"methods = [2]\n",
|
473 |
+
"voting = True\n",
|
474 |
+
"\n",
|
475 |
+
"# run 5 tasks\n",
|
476 |
+
"for t in range(5):\n",
|
477 |
+
" acc = []\n",
|
478 |
+
" clients_datasets = [c1, c2, c3, c4, c5]\n",
|
479 |
+
" cloud_dataset = [clients_datasets.pop(t)]\n",
|
480 |
+
" target = f\"c{t+1}\"\n",
|
481 |
+
"\n",
|
482 |
+
" # use three seeds\n",
|
483 |
+
" for s in range(3):\n",
|
484 |
+
" torch.manual_seed(s)\n",
|
485 |
+
" random.seed(s)\n",
|
486 |
+
" np.random.seed(s)\n",
|
487 |
+
" \n",
|
488 |
+
" acc_m = []\n",
|
489 |
+
" for method in methods:\n",
|
490 |
+
"\n",
|
491 |
+
" print(f\"Task: c{t+1} Seed: {s} Method: {method}\")\n",
|
492 |
+
"\n",
|
493 |
+
" evl = run(method, voting)\n",
|
494 |
+
" \n",
|
495 |
+
" result = np.array((evl)).T\n",
|
496 |
+
" plt.plot(result[0], label = \"Global\", color = 'C4')\n",
|
497 |
+
" plt.legend()\n",
|
498 |
+
" plt.show()\n",
|
499 |
+
"\n",
|
500 |
+
" acc_m.append(max(np.array((evl))[:,0]))\n",
|
501 |
+
" acc.append(acc_m)\n",
|
502 |
+
" \n",
|
503 |
+
" print(f'Task: c{t+1} Mean: {np.mean((np.array((acc)).T), axis =1)}')\n",
|
504 |
+
" print(f'Task: c{t+1} Std: {np.std((np.array((acc)).T), axis =1)}')"
|
505 |
+
]
|
506 |
+
},
|
507 |
+
{
|
508 |
+
"cell_type": "code",
|
509 |
+
"execution_count": null,
|
510 |
+
"metadata": {},
|
511 |
+
"outputs": [],
|
512 |
+
"source": []
|
513 |
+
}
|
514 |
+
],
|
515 |
+
"metadata": {
|
516 |
+
"colab": {
|
517 |
+
"name": "proposal.ipynb",
|
518 |
+
"provenance": []
|
519 |
+
},
|
520 |
+
"kernelspec": {
|
521 |
+
"display_name": "Python 3 (ipykernel)",
|
522 |
+
"language": "python",
|
523 |
+
"name": "python3"
|
524 |
+
},
|
525 |
+
"language_info": {
|
526 |
+
"codemirror_mode": {
|
527 |
+
"name": "ipython",
|
528 |
+
"version": 3
|
529 |
+
},
|
530 |
+
"file_extension": ".py",
|
531 |
+
"mimetype": "text/x-python",
|
532 |
+
"name": "python",
|
533 |
+
"nbconvert_exporter": "python",
|
534 |
+
"pygments_lexer": "ipython3",
|
535 |
+
"version": "3.7.11"
|
536 |
+
}
|
537 |
+
},
|
538 |
+
"nbformat": 4,
|
539 |
+
"nbformat_minor": 1
|
540 |
+
}
|