update to v1.1
Browse files- config.json +1 -1
- model-00001-of-00008.safetensors +1 -1
- model-00002-of-00008.safetensors +1 -1
- model-00003-of-00008.safetensors +1 -1
- model-00004-of-00008.safetensors +1 -1
- model-00005-of-00008.safetensors +1 -1
- model-00006-of-00008.safetensors +1 -1
- model-00007-of-00008.safetensors +1 -1
- model-00008-of-00008.safetensors +1 -1
- modeling_cogvlm.py +73 -24
- util.py +0 -483
config.json
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
{
|
| 2 |
-
"_name_or_path": "cogvlm-grounding-generalist",
|
| 3 |
"architectures": [
|
| 4 |
"CogVLMForCausalLM"
|
| 5 |
],
|
|
|
|
| 1 |
{
|
| 2 |
+
"_name_or_path": "cogvlm-grounding-generalist-v1-1",
|
| 3 |
"architectures": [
|
| 4 |
"CogVLMForCausalLM"
|
| 5 |
],
|
model-00001-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4938885184
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0ff07f55a4068d8d553593122343209b30b895760fcd83924cf9001c09c683c2
|
| 3 |
size 4938885184
|
model-00002-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4947290688
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6ab2d1ce61f81a53be36e9af77f122e74aca0ff875b58006436effa50884c005
|
| 3 |
size 4947290688
|
model-00003-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4947307592
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48edfcbc0ee4a397ff8dc5e972e02f0299ba779d5929367c9caae0cc751cf892
|
| 3 |
size 4947307592
|
model-00004-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4991331080
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:ed00da067fca6bdbc1b65f0c1482d716e0ee4ee648170f0588dc6cb0d23588cb
|
| 3 |
size 4991331080
|
model-00005-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4991331088
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b4a6c6a257805bd07721ebcb5884b1048248d732aa979cd4375761183b806d46
|
| 3 |
size 4991331088
|
model-00006-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4970162920
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:37afe090f7597fa338287fb12f501cb74828005bb0f7a0d51fa6c410711de7ee
|
| 3 |
size 4970162920
|
model-00007-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 4960543792
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:63a91f88f413ec65b0345f30e394cdfcf9a24fcd820825ecbcd35de78b469fa9
|
| 3 |
size 4960543792
|
model-00008-of-00008.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 532677104
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f97723a9e977d4416d2a70739c56aa8f8f50e55b86ddc71d7a4c9262e5167bbd
|
| 3 |
size 532677104
|
modeling_cogvlm.py
CHANGED
|
@@ -5,6 +5,7 @@ from typing import TYPE_CHECKING, Optional, Tuple, List, Union, Literal, Dict, A
|
|
| 5 |
import math
|
| 6 |
import torch
|
| 7 |
from torch import nn
|
|
|
|
| 8 |
from torch.nn import CrossEntropyLoss
|
| 9 |
from torchvision import transforms
|
| 10 |
from einops import rearrange
|
|
@@ -15,7 +16,6 @@ from transformers.activations import ACT2FN
|
|
| 15 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 16 |
|
| 17 |
from .configuration_cogvlm import CogVLMConfig
|
| 18 |
-
from .util import FastRotaryEmbedding
|
| 19 |
from .visual import EVA2CLIPModel
|
| 20 |
|
| 21 |
if TYPE_CHECKING:
|
|
@@ -144,6 +144,57 @@ def attention_fn(
|
|
| 144 |
return context_layer
|
| 145 |
|
| 146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
class VisionExpertAttention(nn.Module):
|
| 148 |
def __init__(self, config):
|
| 149 |
super().__init__()
|
|
@@ -153,8 +204,7 @@ class VisionExpertAttention(nn.Module):
|
|
| 153 |
self.head_dim = self.hidden_size // self.num_heads
|
| 154 |
self.max_position_embeddings = config.max_position_embeddings
|
| 155 |
|
| 156 |
-
|
| 157 |
-
self.rotary_emb = FastRotaryEmbedding(dim=self.head_dim, pos_idx_in_fp32=False)
|
| 158 |
self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
| 159 |
self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 160 |
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
|
@@ -193,8 +243,8 @@ class VisionExpertAttention(nn.Module):
|
|
| 193 |
kv_seq_len = key_states.shape[-2]
|
| 194 |
if past_key_value is not None:
|
| 195 |
kv_seq_len += past_key_value[0].shape[-2]
|
| 196 |
-
|
| 197 |
-
query_states, key_states =
|
| 198 |
|
| 199 |
if past_key_value is not None:
|
| 200 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
@@ -278,7 +328,7 @@ class CogVLMPreTrainedModel(PreTrainedModel):
|
|
| 278 |
config_class = CogVLMConfig
|
| 279 |
base_model_prefix = "model"
|
| 280 |
supports_gradient_checkpointing = False
|
| 281 |
-
_no_split_modules = ["CogVLMDecoderLayer"]
|
| 282 |
_skip_keys_device_placement = "past_key_values"
|
| 283 |
|
| 284 |
def _init_weights(self, module):
|
|
@@ -538,25 +588,23 @@ class CogVLMModel(CogVLMPreTrainedModel):
|
|
| 538 |
return combined_attention_mask
|
| 539 |
|
| 540 |
|
| 541 |
-
def
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
|
| 545 |
-
|
| 546 |
-
|
| 547 |
-
|
|
|
|
|
|
|
| 548 |
|
| 549 |
-
|
| 550 |
-
|
|
|
|
|
|
|
| 551 |
return prompt
|
| 552 |
|
| 553 |
|
| 554 |
-
_history_to_prompt = {
|
| 555 |
-
"base": base_history_to_prompt,
|
| 556 |
-
"chat": chat_history_to_prompt
|
| 557 |
-
}
|
| 558 |
-
|
| 559 |
-
|
| 560 |
class CogVLMForCausalLM(CogVLMPreTrainedModel):
|
| 561 |
_auto_class = "AutoModelForCausalLM"
|
| 562 |
|
|
@@ -708,7 +756,8 @@ class CogVLMForCausalLM(CogVLMPreTrainedModel):
|
|
| 708 |
# update token_type_ids with last value
|
| 709 |
if "token_type_ids" in model_kwargs:
|
| 710 |
token_type_ids = model_kwargs["token_type_ids"]
|
| 711 |
-
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
|
|
|
|
| 712 |
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
| 713 |
|
| 714 |
if not is_encoder_decoder:
|
|
@@ -744,14 +793,14 @@ class CogVLMForCausalLM(CogVLMPreTrainedModel):
|
|
| 744 |
query: str,
|
| 745 |
history: Optional[List[Tuple[str, str]]] = None,
|
| 746 |
images: Optional[List["PIL.Image"]] = None,
|
| 747 |
-
template_version: Optional[Literal["base", "chat"]] = None,
|
| 748 |
):
|
| 749 |
image_size: int = self.config.vision_config['image_size']
|
| 750 |
patch_size: int = self.config.vision_config['patch_size']
|
| 751 |
template_version = template_version or self.config.template_version
|
| 752 |
assert images is None or len(images) <= 1, f"not support multi images by now."
|
| 753 |
history = history or []
|
| 754 |
-
text = _history_to_prompt
|
| 755 |
|
| 756 |
input_ids = [tokenizer.bos_token_id]
|
| 757 |
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
|
|
|
| 5 |
import math
|
| 6 |
import torch
|
| 7 |
from torch import nn
|
| 8 |
+
from torch.nn import functional as F
|
| 9 |
from torch.nn import CrossEntropyLoss
|
| 10 |
from torchvision import transforms
|
| 11 |
from einops import rearrange
|
|
|
|
| 16 |
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
| 17 |
|
| 18 |
from .configuration_cogvlm import CogVLMConfig
|
|
|
|
| 19 |
from .visual import EVA2CLIPModel
|
| 20 |
|
| 21 |
if TYPE_CHECKING:
|
|
|
|
| 144 |
return context_layer
|
| 145 |
|
| 146 |
|
| 147 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 148 |
+
def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
|
| 149 |
+
super().__init__()
|
| 150 |
+
|
| 151 |
+
self.dim = dim
|
| 152 |
+
self.max_position_embeddings = max_position_embeddings
|
| 153 |
+
self.base = base
|
| 154 |
+
inv_freq = self._compute_inv_freq(device)
|
| 155 |
+
self.register_buffer("inv_freq", inv_freq)
|
| 156 |
+
self.max_seq_len_cached = 0
|
| 157 |
+
|
| 158 |
+
def _compute_inv_freq(self, device=None):
|
| 159 |
+
return 1.0 / (
|
| 160 |
+
self.base
|
| 161 |
+
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 165 |
+
self.max_seq_len_cached = seq_len
|
| 166 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 167 |
+
|
| 168 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 169 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 170 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 171 |
+
self.register_buffer("cos_cached", emb.cos()[:, None, :].to(dtype), persistent=False)
|
| 172 |
+
self.register_buffer("sin_cached", emb.sin()[:, None, :].to(dtype), persistent=False)
|
| 173 |
+
|
| 174 |
+
def forward(self, x, seq_len):
|
| 175 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 176 |
+
if seq_len > self.max_seq_len_cached:
|
| 177 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 178 |
+
|
| 179 |
+
return (
|
| 180 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 181 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 182 |
+
)
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def rotate_half(x):
|
| 186 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
| 187 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def apply_rotary_pos_emb_index_bhs(q, k, cos, sin, position_id):
|
| 191 |
+
# batch_size, num_head, seq_len, hidden_size
|
| 192 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(1), \
|
| 193 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(1)
|
| 194 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
| 195 |
+
return q, k
|
| 196 |
+
|
| 197 |
+
|
| 198 |
class VisionExpertAttention(nn.Module):
|
| 199 |
def __init__(self, config):
|
| 200 |
super().__init__()
|
|
|
|
| 204 |
self.head_dim = self.hidden_size // self.num_heads
|
| 205 |
self.max_position_embeddings = config.max_position_embeddings
|
| 206 |
|
| 207 |
+
self.rotary_emb = RotaryEmbedding(self.head_dim)
|
|
|
|
| 208 |
self.vision_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
| 209 |
self.vision_expert_dense = nn.Linear(self.hidden_size, self.hidden_size, bias=False)
|
| 210 |
self.language_expert_query_key_value = nn.Linear(self.hidden_size, self.hidden_size * 3, bias=False)
|
|
|
|
| 243 |
kv_seq_len = key_states.shape[-2]
|
| 244 |
if past_key_value is not None:
|
| 245 |
kv_seq_len += past_key_value[0].shape[-2]
|
| 246 |
+
cos, sin = self.rotary_emb(value_states, seq_len=position_ids.max() + 1)
|
| 247 |
+
query_states, key_states = apply_rotary_pos_emb_index_bhs(query_states, key_states, cos, sin, position_ids)
|
| 248 |
|
| 249 |
if past_key_value is not None:
|
| 250 |
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
|
|
|
| 328 |
config_class = CogVLMConfig
|
| 329 |
base_model_prefix = "model"
|
| 330 |
supports_gradient_checkpointing = False
|
| 331 |
+
_no_split_modules = ["CogVLMDecoderLayer", "TransformerLayer"]
|
| 332 |
_skip_keys_device_placement = "past_key_values"
|
| 333 |
|
| 334 |
def _init_weights(self, module):
|
|
|
|
| 588 |
return combined_attention_mask
|
| 589 |
|
| 590 |
|
| 591 |
+
def _history_to_prompt(signal_type, history, query):
|
| 592 |
+
if signal_type == 'base':
|
| 593 |
+
return query
|
| 594 |
+
elif signal_type == 'vqa':
|
| 595 |
+
answer_format = 'Short answer:'
|
| 596 |
+
elif signal_type == 'chat':
|
| 597 |
+
answer_format = 'Answer:'
|
| 598 |
+
else:
|
| 599 |
+
assert False, f"Unknown signal type {signal_type}"
|
| 600 |
|
| 601 |
+
prompt = ''
|
| 602 |
+
for i, (old_query, response) in enumerate(history):
|
| 603 |
+
prompt += 'Question: ' + old_query + " {} ".format(answer_format) + response + "\n"
|
| 604 |
+
prompt += 'Question: {} {}'.format(query, answer_format)
|
| 605 |
return prompt
|
| 606 |
|
| 607 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
class CogVLMForCausalLM(CogVLMPreTrainedModel):
|
| 609 |
_auto_class = "AutoModelForCausalLM"
|
| 610 |
|
|
|
|
| 756 |
# update token_type_ids with last value
|
| 757 |
if "token_type_ids" in model_kwargs:
|
| 758 |
token_type_ids = model_kwargs["token_type_ids"]
|
| 759 |
+
new_token_type_ids = torch.ones(size=(token_type_ids.shape[0], 1), dtype=token_type_ids.dtype,
|
| 760 |
+
device=token_type_ids.device) * LANGUAGE_TOKEN_TYPE
|
| 761 |
model_kwargs["token_type_ids"] = torch.cat([token_type_ids, new_token_type_ids], dim=-1)
|
| 762 |
|
| 763 |
if not is_encoder_decoder:
|
|
|
|
| 793 |
query: str,
|
| 794 |
history: Optional[List[Tuple[str, str]]] = None,
|
| 795 |
images: Optional[List["PIL.Image"]] = None,
|
| 796 |
+
template_version: Optional[Literal["base", "chat", "vqa"]] = None,
|
| 797 |
):
|
| 798 |
image_size: int = self.config.vision_config['image_size']
|
| 799 |
patch_size: int = self.config.vision_config['patch_size']
|
| 800 |
template_version = template_version or self.config.template_version
|
| 801 |
assert images is None or len(images) <= 1, f"not support multi images by now."
|
| 802 |
history = history or []
|
| 803 |
+
text = _history_to_prompt(template_version, history, query)
|
| 804 |
|
| 805 |
input_ids = [tokenizer.bos_token_id]
|
| 806 |
token_type_ids = [LANGUAGE_TOKEN_TYPE]
|
util.py
DELETED
|
@@ -1,483 +0,0 @@
|
|
| 1 |
-
from typing import Optional, Tuple, Union
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
from einops import rearrange, repeat
|
| 5 |
-
import torch.nn.functional as F
|
| 6 |
-
|
| 7 |
-
import triton
|
| 8 |
-
import triton.language as tl
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
# @triton.autotune(
|
| 12 |
-
# configs=[
|
| 13 |
-
# triton.Config({"BLOCK_M": 2}),
|
| 14 |
-
# triton.Config({"BLOCK_M": 4}),
|
| 15 |
-
# triton.Config({"BLOCK_M": 8}),
|
| 16 |
-
# triton.Config({"BLOCK_M": 16}),
|
| 17 |
-
# ],
|
| 18 |
-
# key=["CACHE_KEY_SEQLEN", "BLOCK_K", "INTERLEAVED"],
|
| 19 |
-
# )
|
| 20 |
-
@triton.jit
|
| 21 |
-
def rotary_kernel(
|
| 22 |
-
OUT, # Pointers to matrices
|
| 23 |
-
X,
|
| 24 |
-
COS,
|
| 25 |
-
SIN,
|
| 26 |
-
CU_SEQLENS,
|
| 27 |
-
SEQLEN_OFFSETS, # this could be int or a pointer
|
| 28 |
-
# Matrix dimensions
|
| 29 |
-
seqlen,
|
| 30 |
-
nheads,
|
| 31 |
-
rotary_dim,
|
| 32 |
-
seqlen_ro,
|
| 33 |
-
CACHE_KEY_SEQLEN,
|
| 34 |
-
# strides
|
| 35 |
-
stride_out_batch,
|
| 36 |
-
stride_out_nheads,
|
| 37 |
-
stride_out_seqlen,
|
| 38 |
-
stride_out_headdim,
|
| 39 |
-
stride_x_batch,
|
| 40 |
-
stride_x_nheads,
|
| 41 |
-
stride_x_seqlen,
|
| 42 |
-
stride_x_headdim,
|
| 43 |
-
# Meta-parameters
|
| 44 |
-
BLOCK_K: tl.constexpr,
|
| 45 |
-
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
|
| 46 |
-
IS_VARLEN: tl.constexpr,
|
| 47 |
-
INTERLEAVED: tl.constexpr,
|
| 48 |
-
CONJUGATE: tl.constexpr,
|
| 49 |
-
BLOCK_M: tl.constexpr,
|
| 50 |
-
):
|
| 51 |
-
pid_m = tl.program_id(axis=0)
|
| 52 |
-
pid_batch = tl.program_id(axis=1)
|
| 53 |
-
pid_head = tl.program_id(axis=2)
|
| 54 |
-
rotary_dim_half = rotary_dim // 2
|
| 55 |
-
|
| 56 |
-
if not IS_VARLEN:
|
| 57 |
-
X = X + pid_batch * stride_x_batch + pid_head * stride_x_nheads
|
| 58 |
-
OUT = OUT + pid_batch * stride_out_batch + pid_head * stride_out_nheads
|
| 59 |
-
COS = COS + pid_batch * seqlen_ro * rotary_dim_half
|
| 60 |
-
SIN = SIN + pid_batch * seqlen_ro * rotary_dim_half
|
| 61 |
-
else:
|
| 62 |
-
start_idx = tl.load(CU_SEQLENS + pid_batch)
|
| 63 |
-
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
|
| 64 |
-
X = X + start_idx * stride_x_seqlen + pid_head * stride_x_nheads
|
| 65 |
-
OUT = OUT + start_idx * stride_out_seqlen + pid_head * stride_out_nheads
|
| 66 |
-
|
| 67 |
-
if pid_m * BLOCK_M >= seqlen:
|
| 68 |
-
return
|
| 69 |
-
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
| 70 |
-
if not IS_SEQLEN_OFFSETS_TENSOR:
|
| 71 |
-
rm_cs = rm + SEQLEN_OFFSETS
|
| 72 |
-
else:
|
| 73 |
-
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
|
| 74 |
-
rk = tl.arange(0, BLOCK_K)
|
| 75 |
-
rk_half = tl.arange(0, BLOCK_K // 2)
|
| 76 |
-
|
| 77 |
-
if not INTERLEAVED:
|
| 78 |
-
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
|
| 79 |
-
X = X + (rm[:, None] * stride_x_seqlen + rk_half[None, :] * stride_x_headdim)
|
| 80 |
-
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
| 81 |
-
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_half[None, :])
|
| 82 |
-
cos = tl.load(
|
| 83 |
-
COS, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=1.0
|
| 84 |
-
)
|
| 85 |
-
sin = tl.load(
|
| 86 |
-
SIN, mask=(rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
| 87 |
-
)
|
| 88 |
-
x0 = tl.load(
|
| 89 |
-
X, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half), other=0.0
|
| 90 |
-
)
|
| 91 |
-
x1 = tl.load(
|
| 92 |
-
X + rotary_dim_half * stride_x_headdim,
|
| 93 |
-
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
| 94 |
-
other=0.0,
|
| 95 |
-
)
|
| 96 |
-
if CONJUGATE:
|
| 97 |
-
sin = -sin
|
| 98 |
-
o0 = x0 * cos - x1 * sin
|
| 99 |
-
o1 = x0 * sin + x1 * cos
|
| 100 |
-
# write back result
|
| 101 |
-
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk_half[None, :] * stride_out_headdim)
|
| 102 |
-
tl.store(OUT, o0, mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half))
|
| 103 |
-
tl.store(
|
| 104 |
-
OUT + rotary_dim_half * stride_out_headdim,
|
| 105 |
-
o1,
|
| 106 |
-
mask=(rm[:, None] < seqlen) & (rk_half[None, :] < rotary_dim_half),
|
| 107 |
-
)
|
| 108 |
-
else:
|
| 109 |
-
# We don't want to load X[0, 2, 4, ...] and X[1, 3, 5, ...] separately since both are slow.
|
| 110 |
-
# Instead, we load x0 = X[0, 1, 2, 3, ...] and x1 = X[1, 0, 3, 2, ...].
|
| 111 |
-
# Loading x0 will be fast but x1 will be slow.
|
| 112 |
-
# Then we load cos = COS[0, 0, 1, 1, ...] and sin = SIN[0, 0, 1, 1, ...].
|
| 113 |
-
# Then we do the calculation and use tl.where to pick put the right outputs for the even
|
| 114 |
-
# and for the odd indices.
|
| 115 |
-
rk_swap = rk + ((rk + 1) % 2) * 2 - 1 # 1, 0, 3, 2, 5, 4, ...
|
| 116 |
-
rk_repeat = tl.arange(0, BLOCK_K) // 2
|
| 117 |
-
X0 = X + (rm[:, None] * stride_x_seqlen + rk[None, :] * stride_x_headdim)
|
| 118 |
-
X1 = X + (rm[:, None] * stride_x_seqlen + rk_swap[None, :] * stride_x_headdim)
|
| 119 |
-
COS = COS + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
| 120 |
-
SIN = SIN + (rm_cs[:, None] * rotary_dim_half + rk_repeat[None, :])
|
| 121 |
-
cos = tl.load(
|
| 122 |
-
COS,
|
| 123 |
-
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
| 124 |
-
other=1.0,
|
| 125 |
-
).to(tl.float32)
|
| 126 |
-
sin = tl.load(
|
| 127 |
-
SIN,
|
| 128 |
-
mask=(rm_cs[:, None] < seqlen_ro) & (rk_repeat[None, :] < rotary_dim_half),
|
| 129 |
-
other=0.0,
|
| 130 |
-
).to(tl.float32)
|
| 131 |
-
x0 = tl.load(X0, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim), other=0.0).to(
|
| 132 |
-
tl.float32
|
| 133 |
-
)
|
| 134 |
-
x1 = tl.load(
|
| 135 |
-
X1, mask=(rm[:, None] < seqlen) & (rk_swap[None, :] < rotary_dim), other=0.0
|
| 136 |
-
).to(tl.float32)
|
| 137 |
-
if CONJUGATE:
|
| 138 |
-
sin = -sin
|
| 139 |
-
x0_cos = x0 * cos
|
| 140 |
-
x1_sin = x1 * sin
|
| 141 |
-
out = tl.where(rk[None, :] % 2 == 0, x0_cos - x1_sin, x0_cos + x1_sin)
|
| 142 |
-
OUT = OUT + (rm[:, None] * stride_out_seqlen + rk[None, :] * stride_out_headdim)
|
| 143 |
-
tl.store(OUT, out, mask=(rm[:, None] < seqlen) & (rk[None, :] < rotary_dim))
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
def apply_rotary(
|
| 147 |
-
x: torch.Tensor,
|
| 148 |
-
cos: torch.Tensor,
|
| 149 |
-
sin: torch.Tensor,
|
| 150 |
-
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 151 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
| 152 |
-
max_seqlen: Optional[int] = None,
|
| 153 |
-
interleaved=False,
|
| 154 |
-
inplace=False,
|
| 155 |
-
conjugate=False,
|
| 156 |
-
) -> torch.Tensor:
|
| 157 |
-
"""
|
| 158 |
-
Arguments:
|
| 159 |
-
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
|
| 160 |
-
else (total_seqlen, nheads, headdim).
|
| 161 |
-
cos: (seqlen_ro, rotary_dim / 2)
|
| 162 |
-
sin: (seqlen_ro, rotary_dim / 2)
|
| 163 |
-
seqlen_offsets: integer or integer tensor of size (batch,)
|
| 164 |
-
cu_seqlens: (batch + 1,) or None
|
| 165 |
-
max_seqlen: int
|
| 166 |
-
Returns:
|
| 167 |
-
y: (batch, seqlen, nheads, headdim)
|
| 168 |
-
"""
|
| 169 |
-
|
| 170 |
-
batch, nheads, seqlen, headdim = x.shape
|
| 171 |
-
|
| 172 |
-
batch_ro, seqlen_ro, rotary_dim = cos.shape
|
| 173 |
-
|
| 174 |
-
assert batch == batch_ro
|
| 175 |
-
assert sin.shape == cos.shape
|
| 176 |
-
rotary_dim *= 2
|
| 177 |
-
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
|
| 178 |
-
assert headdim <= 256, "Only support headdim <= 256"
|
| 179 |
-
|
| 180 |
-
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
|
| 181 |
-
|
| 182 |
-
assert (
|
| 183 |
-
cos.dtype == sin.dtype
|
| 184 |
-
), f"cos and sin must have the same dtype, got {cos.dtype} and {sin.dtype}"
|
| 185 |
-
assert (
|
| 186 |
-
x.dtype == cos.dtype
|
| 187 |
-
), f"Input and cos/sin must have the same dtype, got {x.dtype} and {cos.dtype}"
|
| 188 |
-
|
| 189 |
-
cos, sin = cos.contiguous(), sin.contiguous()
|
| 190 |
-
if isinstance(seqlen_offsets, torch.Tensor):
|
| 191 |
-
assert seqlen_offsets.shape == (batch,)
|
| 192 |
-
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
|
| 193 |
-
seqlen_offsets = seqlen_offsets.contiguous()
|
| 194 |
-
else:
|
| 195 |
-
assert seqlen_offsets + seqlen <= seqlen_ro
|
| 196 |
-
|
| 197 |
-
output = torch.empty_like(x) if not inplace else x
|
| 198 |
-
if rotary_dim < headdim and not inplace:
|
| 199 |
-
output[..., rotary_dim:].copy_(x[..., rotary_dim:])
|
| 200 |
-
|
| 201 |
-
BLOCK_K = (
|
| 202 |
-
32
|
| 203 |
-
if rotary_dim <= 32
|
| 204 |
-
else (64 if rotary_dim <= 64 else (128 if rotary_dim <= 128 else 256))
|
| 205 |
-
)
|
| 206 |
-
grid = lambda META: (triton.cdiv(seqlen, META["BLOCK_M"]), batch, nheads) # noqa
|
| 207 |
-
BLOCK_M = 4 if interleaved else (8 if rotary_dim <= 64 else 4)
|
| 208 |
-
|
| 209 |
-
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
| 210 |
-
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
| 211 |
-
with torch.cuda.device(x.device.index):
|
| 212 |
-
rotary_kernel[grid](
|
| 213 |
-
output, # data ptrs
|
| 214 |
-
x,
|
| 215 |
-
cos,
|
| 216 |
-
sin,
|
| 217 |
-
cu_seqlens,
|
| 218 |
-
seqlen_offsets,
|
| 219 |
-
seqlen, # shapes
|
| 220 |
-
nheads,
|
| 221 |
-
rotary_dim,
|
| 222 |
-
seqlen_ro,
|
| 223 |
-
seqlen // 128, # key for triton cache (limit number of compilations)
|
| 224 |
-
output.stride(0), # batch_strides
|
| 225 |
-
output.stride(-3), # nheads_stride
|
| 226 |
-
output.stride(-2), # seqlen_stride
|
| 227 |
-
output.stride(-1), # headdim_stride
|
| 228 |
-
x.stride(0), # batch_strides
|
| 229 |
-
x.stride(-3), # nheads stride
|
| 230 |
-
x.stride(-2), # seqlen stride
|
| 231 |
-
x.stride(-1), # headdim stride
|
| 232 |
-
BLOCK_K,
|
| 233 |
-
isinstance(seqlen_offsets, torch.Tensor),
|
| 234 |
-
False,
|
| 235 |
-
interleaved,
|
| 236 |
-
conjugate,
|
| 237 |
-
BLOCK_M,
|
| 238 |
-
)
|
| 239 |
-
return output
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
class ApplyRotaryEmb(torch.autograd.Function):
|
| 243 |
-
@staticmethod
|
| 244 |
-
def forward(
|
| 245 |
-
ctx,
|
| 246 |
-
x,
|
| 247 |
-
cos,
|
| 248 |
-
sin,
|
| 249 |
-
interleaved=False,
|
| 250 |
-
inplace=False,
|
| 251 |
-
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 252 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
| 253 |
-
max_seqlen: Optional[int] = None,
|
| 254 |
-
):
|
| 255 |
-
out = apply_rotary(
|
| 256 |
-
x,
|
| 257 |
-
cos,
|
| 258 |
-
sin,
|
| 259 |
-
seqlen_offsets=seqlen_offsets,
|
| 260 |
-
cu_seqlens=cu_seqlens,
|
| 261 |
-
max_seqlen=max_seqlen,
|
| 262 |
-
interleaved=interleaved,
|
| 263 |
-
inplace=inplace,
|
| 264 |
-
)
|
| 265 |
-
if isinstance(seqlen_offsets, int):
|
| 266 |
-
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
| 267 |
-
ctx.seqlen_offsets = seqlen_offsets
|
| 268 |
-
else:
|
| 269 |
-
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
| 270 |
-
ctx.seqlen_offsets = None
|
| 271 |
-
ctx.interleaved = interleaved
|
| 272 |
-
ctx.inplace = inplace
|
| 273 |
-
ctx.max_seqlen = max_seqlen
|
| 274 |
-
return out if not inplace else x
|
| 275 |
-
|
| 276 |
-
@staticmethod
|
| 277 |
-
def backward(ctx, do):
|
| 278 |
-
seqlen_offsets = ctx.seqlen_offsets
|
| 279 |
-
if seqlen_offsets is None:
|
| 280 |
-
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
| 281 |
-
else:
|
| 282 |
-
cos, sin, cu_seqlens = ctx.saved_tensors
|
| 283 |
-
# TD [2023-09-02]: For some reason Triton (2.0.0.post1) errors with
|
| 284 |
-
# "[CUDA]: invalid device context", and cloning makes it work. Idk why. Triton 2.1.0 works.
|
| 285 |
-
if not ctx.interleaved and not ctx.inplace:
|
| 286 |
-
do = do.clone()
|
| 287 |
-
dx = apply_rotary(
|
| 288 |
-
do,
|
| 289 |
-
cos,
|
| 290 |
-
sin,
|
| 291 |
-
seqlen_offsets=seqlen_offsets,
|
| 292 |
-
cu_seqlens=cu_seqlens,
|
| 293 |
-
max_seqlen=ctx.max_seqlen,
|
| 294 |
-
interleaved=ctx.interleaved,
|
| 295 |
-
inplace=ctx.inplace,
|
| 296 |
-
conjugate=True,
|
| 297 |
-
)
|
| 298 |
-
return dx, None, None, None, None, None, None, None
|
| 299 |
-
|
| 300 |
-
|
| 301 |
-
def apply_rotary_emb(
|
| 302 |
-
x,
|
| 303 |
-
cos,
|
| 304 |
-
sin,
|
| 305 |
-
interleaved=False,
|
| 306 |
-
inplace=False,
|
| 307 |
-
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
| 308 |
-
cu_seqlens: Optional[torch.Tensor] = None,
|
| 309 |
-
max_seqlen: Optional[int] = None,
|
| 310 |
-
):
|
| 311 |
-
"""
|
| 312 |
-
Arguments:
|
| 313 |
-
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
| 314 |
-
else (total_seqlen, nheads, headdim)
|
| 315 |
-
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
| 316 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 317 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
| 318 |
-
inplace: if True, apply rotary embedding in-place.
|
| 319 |
-
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
| 320 |
-
Most commonly used in inference when we have KV cache.
|
| 321 |
-
cu_seqlens: (batch + 1,) or None
|
| 322 |
-
max_seqlen: int
|
| 323 |
-
Return:
|
| 324 |
-
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
| 325 |
-
else (total_seqlen, nheads, headdim)
|
| 326 |
-
rotary_dim must be <= headdim
|
| 327 |
-
Apply rotary embedding to the first rotary_dim of x.
|
| 328 |
-
"""
|
| 329 |
-
return ApplyRotaryEmb.apply(
|
| 330 |
-
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
| 331 |
-
)
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
# For backward compatibility
|
| 335 |
-
apply_rotary_emb_func = apply_rotary_emb
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
class FastRotaryEmbedding(torch.nn.Module):
|
| 339 |
-
"""
|
| 340 |
-
The rotary position embeddings from RoFormer_ (Su et. al).
|
| 341 |
-
A crucial insight from the method is that the query and keys are
|
| 342 |
-
transformed by rotation matrices which depend on the relative positions.
|
| 343 |
-
|
| 344 |
-
Other implementations are available in the Rotary Transformer repo_ and in
|
| 345 |
-
GPT-NeoX_, GPT-NeoX was an inspiration
|
| 346 |
-
|
| 347 |
-
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
| 348 |
-
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
| 349 |
-
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
| 350 |
-
|
| 351 |
-
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
| 352 |
-
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
| 353 |
-
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
| 354 |
-
"""
|
| 355 |
-
|
| 356 |
-
def __init__(
|
| 357 |
-
self,
|
| 358 |
-
dim: int,
|
| 359 |
-
base=10000,
|
| 360 |
-
interleaved=False,
|
| 361 |
-
scale_base=None,
|
| 362 |
-
pos_idx_in_fp32=True,
|
| 363 |
-
device=None,
|
| 364 |
-
):
|
| 365 |
-
"""
|
| 366 |
-
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
| 367 |
-
of 1st half and 2nd half (GPT-NeoX style).
|
| 368 |
-
pos_idx_in_fp32: if True, the position indices [0.0, ..., seqlen - 1] are in fp32,
|
| 369 |
-
otherwise they might be in lower precision.
|
| 370 |
-
This option was added because previously (before 2023-07-02), when we construct
|
| 371 |
-
the position indices, we use the dtype of self.inv_freq. In most cases this would
|
| 372 |
-
be fp32, but if the model is trained in pure bf16 (not mixed precision), then
|
| 373 |
-
self.inv_freq would be bf16, and the position indices are also in bf16.
|
| 374 |
-
Because of the limited precision of bf16 (e.g. 1995.0 is rounded to 2000.0), the
|
| 375 |
-
embeddings for some positions will coincide.
|
| 376 |
-
To maintain compatibility with models previously trained in pure bf16,
|
| 377 |
-
we add this option.
|
| 378 |
-
"""
|
| 379 |
-
super().__init__()
|
| 380 |
-
self.dim = dim
|
| 381 |
-
self.base = base
|
| 382 |
-
self.pos_idx_in_fp32 = pos_idx_in_fp32
|
| 383 |
-
# Generate and save the inverse frequency buffer (non trainable)
|
| 384 |
-
inv_freq = self._compute_inv_freq(device)
|
| 385 |
-
self.register_buffer("inv_freq", inv_freq)
|
| 386 |
-
self.interleaved = interleaved
|
| 387 |
-
self.scale_base = scale_base
|
| 388 |
-
scale = (
|
| 389 |
-
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
| 390 |
-
if scale_base is not None
|
| 391 |
-
else None
|
| 392 |
-
)
|
| 393 |
-
self.register_buffer("scale", scale, persistent=False)
|
| 394 |
-
|
| 395 |
-
self._seq_len_cached = 0
|
| 396 |
-
self._cos_cached = None
|
| 397 |
-
self._sin_cached = None
|
| 398 |
-
self._cos_k_cached = None
|
| 399 |
-
self._sin_k_cached = None
|
| 400 |
-
self.cos = None
|
| 401 |
-
self.sin = None
|
| 402 |
-
|
| 403 |
-
def _compute_inv_freq(self, device=None):
|
| 404 |
-
return 1.0 / (
|
| 405 |
-
self.base
|
| 406 |
-
** (torch.arange(0, self.dim, 2, device=device) / self.dim)
|
| 407 |
-
# ** (torch.arange(0, self.dim, 2, device=device).float() / self.dim)
|
| 408 |
-
)
|
| 409 |
-
|
| 410 |
-
def _update_cos_sin_cache(self, seqlen, position_id, device=None, dtype=None):
|
| 411 |
-
|
| 412 |
-
if (
|
| 413 |
-
seqlen > self._seq_len_cached
|
| 414 |
-
):
|
| 415 |
-
self._seq_len_cached = seqlen
|
| 416 |
-
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
| 417 |
-
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
| 418 |
-
# However, for compatibility reason, we add an option to use the dtype of self.inv_freq.
|
| 419 |
-
if self.pos_idx_in_fp32:
|
| 420 |
-
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
| 421 |
-
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
| 422 |
-
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
| 423 |
-
# cos & sin output to change significantly.
|
| 424 |
-
# We want to recompute self.inv_freq if it was not loaded in fp32
|
| 425 |
-
if self.inv_freq.dtype != torch.float32:
|
| 426 |
-
inv_freq = self._compute_inv_freq(device=device)
|
| 427 |
-
else:
|
| 428 |
-
inv_freq = self.inv_freq
|
| 429 |
-
else:
|
| 430 |
-
t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
|
| 431 |
-
inv_freq = self.inv_freq
|
| 432 |
-
freqs = torch.einsum("i,j->ij", t, inv_freq)
|
| 433 |
-
if self.scale is None:
|
| 434 |
-
self._cos_cached = torch.cos(freqs).to(dtype)
|
| 435 |
-
self._sin_cached = torch.sin(freqs).to(dtype)
|
| 436 |
-
|
| 437 |
-
else:
|
| 438 |
-
power = (
|
| 439 |
-
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
| 440 |
-
- seqlen // 2
|
| 441 |
-
) / self.scale_base
|
| 442 |
-
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
| 443 |
-
# We want the multiplication by scale to happen in fp32
|
| 444 |
-
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
| 445 |
-
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
| 446 |
-
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
| 447 |
-
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
| 448 |
-
|
| 449 |
-
def forward(
|
| 450 |
-
self,
|
| 451 |
-
q: torch.Tensor,
|
| 452 |
-
k: torch.Tensor,
|
| 453 |
-
position_ids: torch.Tensor,
|
| 454 |
-
max_seqlen,
|
| 455 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 456 |
-
"""
|
| 457 |
-
q: (batch, nheads, seqlen, headdim)
|
| 458 |
-
k: (batch, nheads, seqlen, headdim)
|
| 459 |
-
position_id: (batch, seqlen)
|
| 460 |
-
max_seqlen: int
|
| 461 |
-
layer_id: int
|
| 462 |
-
only if layer_id == 0, then update cons and sin
|
| 463 |
-
Apply rotary embedding *inplace* to q k.
|
| 464 |
-
"""
|
| 465 |
-
|
| 466 |
-
self._update_cos_sin_cache(max_seqlen, position_ids, device=q.device, dtype=q.dtype)
|
| 467 |
-
cos, sin = F.embedding(position_ids, self._cos_cached), F.embedding(position_ids, self._sin_cached)
|
| 468 |
-
|
| 469 |
-
q = apply_rotary_emb_func(
|
| 470 |
-
q,
|
| 471 |
-
cos,
|
| 472 |
-
sin,
|
| 473 |
-
interleaved=self.interleaved,
|
| 474 |
-
inplace=True
|
| 475 |
-
)
|
| 476 |
-
k = apply_rotary_emb_func(
|
| 477 |
-
k,
|
| 478 |
-
cos,
|
| 479 |
-
sin,
|
| 480 |
-
interleaved=self.interleaved,
|
| 481 |
-
inplace=True
|
| 482 |
-
)
|
| 483 |
-
return q, k
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|