Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/zanelim/singbert/README.md
README.md
ADDED
|
@@ -0,0 +1,215 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- singapore
|
| 5 |
+
- sg
|
| 6 |
+
- singlish
|
| 7 |
+
- malaysia
|
| 8 |
+
- ms
|
| 9 |
+
- manglish
|
| 10 |
+
- bert-base-uncased
|
| 11 |
+
license: mit
|
| 12 |
+
datasets:
|
| 13 |
+
- reddit singapore, malaysia
|
| 14 |
+
- hardwarezone
|
| 15 |
+
widget:
|
| 16 |
+
- text: "kopi c siew [MASK]"
|
| 17 |
+
- text: "die [MASK] must try"
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# Model name
|
| 21 |
+
|
| 22 |
+
SingBert - Bert for Singlish (SG) and Manglish (MY).
|
| 23 |
+
|
| 24 |
+
## Model description
|
| 25 |
+
|
| 26 |
+
[BERT base uncased](https://github.com/google-research/bert#pre-trained-models), with pre-training finetuned on
|
| 27 |
+
[singlish](https://en.wikipedia.org/wiki/Singlish) and [manglish](https://en.wikipedia.org/wiki/Manglish) data.
|
| 28 |
+
|
| 29 |
+
## Intended uses & limitations
|
| 30 |
+
|
| 31 |
+
#### How to use
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
>>> from transformers import pipeline
|
| 35 |
+
>>> nlp = pipeline('fill-mask', model='zanelim/singbert')
|
| 36 |
+
>>> nlp("kopi c siew [MASK]")
|
| 37 |
+
|
| 38 |
+
[{'sequence': '[CLS] kopi c siew dai [SEP]',
|
| 39 |
+
'score': 0.5092713236808777,
|
| 40 |
+
'token': 18765,
|
| 41 |
+
'token_str': 'dai'},
|
| 42 |
+
{'sequence': '[CLS] kopi c siew mai [SEP]',
|
| 43 |
+
'score': 0.3515934646129608,
|
| 44 |
+
'token': 14736,
|
| 45 |
+
'token_str': 'mai'},
|
| 46 |
+
{'sequence': '[CLS] kopi c siew bao [SEP]',
|
| 47 |
+
'score': 0.05576375499367714,
|
| 48 |
+
'token': 25945,
|
| 49 |
+
'token_str': 'bao'},
|
| 50 |
+
{'sequence': '[CLS] kopi c siew. [SEP]',
|
| 51 |
+
'score': 0.006019321270287037,
|
| 52 |
+
'token': 1012,
|
| 53 |
+
'token_str': '.'},
|
| 54 |
+
{'sequence': '[CLS] kopi c siew sai [SEP]',
|
| 55 |
+
'score': 0.0038361591286957264,
|
| 56 |
+
'token': 18952,
|
| 57 |
+
'token_str': 'sai'}]
|
| 58 |
+
|
| 59 |
+
>>> nlp("one teh c siew dai, and one kopi [MASK].")
|
| 60 |
+
|
| 61 |
+
[{'sequence': '[CLS] one teh c siew dai, and one kopi c [SEP]',
|
| 62 |
+
'score': 0.6176503300666809,
|
| 63 |
+
'token': 1039,
|
| 64 |
+
'token_str': 'c'},
|
| 65 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi o [SEP]',
|
| 66 |
+
'score': 0.21094971895217896,
|
| 67 |
+
'token': 1051,
|
| 68 |
+
'token_str': 'o'},
|
| 69 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi. [SEP]',
|
| 70 |
+
'score': 0.13027705252170563,
|
| 71 |
+
'token': 1012,
|
| 72 |
+
'token_str': '.'},
|
| 73 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi! [SEP]',
|
| 74 |
+
'score': 0.004680239595472813,
|
| 75 |
+
'token': 999,
|
| 76 |
+
'token_str': '!'},
|
| 77 |
+
{'sequence': '[CLS] one teh c siew dai, and one kopi w [SEP]',
|
| 78 |
+
'score': 0.002034128177911043,
|
| 79 |
+
'token': 1059,
|
| 80 |
+
'token_str': 'w'}]
|
| 81 |
+
|
| 82 |
+
>>> nlp("dont play [MASK] leh")
|
| 83 |
+
|
| 84 |
+
[{'sequence': '[CLS] dont play play leh [SEP]',
|
| 85 |
+
'score': 0.9281464219093323,
|
| 86 |
+
'token': 2377,
|
| 87 |
+
'token_str': 'play'},
|
| 88 |
+
{'sequence': '[CLS] dont play politics leh [SEP]',
|
| 89 |
+
'score': 0.010990909300744534,
|
| 90 |
+
'token': 4331,
|
| 91 |
+
'token_str': 'politics'},
|
| 92 |
+
{'sequence': '[CLS] dont play punk leh [SEP]',
|
| 93 |
+
'score': 0.005583590362221003,
|
| 94 |
+
'token': 7196,
|
| 95 |
+
'token_str': 'punk'},
|
| 96 |
+
{'sequence': '[CLS] dont play dirty leh [SEP]',
|
| 97 |
+
'score': 0.0025784350000321865,
|
| 98 |
+
'token': 6530,
|
| 99 |
+
'token_str': 'dirty'},
|
| 100 |
+
{'sequence': '[CLS] dont play cheat leh [SEP]',
|
| 101 |
+
'score': 0.0025066907983273268,
|
| 102 |
+
'token': 21910,
|
| 103 |
+
'token_str': 'cheat'}]
|
| 104 |
+
|
| 105 |
+
>>> nlp("catch no [MASK]")
|
| 106 |
+
|
| 107 |
+
[{'sequence': '[CLS] catch no ball [SEP]',
|
| 108 |
+
'score': 0.7922210693359375,
|
| 109 |
+
'token': 3608,
|
| 110 |
+
'token_str': 'ball'},
|
| 111 |
+
{'sequence': '[CLS] catch no balls [SEP]',
|
| 112 |
+
'score': 0.20503675937652588,
|
| 113 |
+
'token': 7395,
|
| 114 |
+
'token_str': 'balls'},
|
| 115 |
+
{'sequence': '[CLS] catch no tail [SEP]',
|
| 116 |
+
'score': 0.0006608376861549914,
|
| 117 |
+
'token': 5725,
|
| 118 |
+
'token_str': 'tail'},
|
| 119 |
+
{'sequence': '[CLS] catch no talent [SEP]',
|
| 120 |
+
'score': 0.0002158183924620971,
|
| 121 |
+
'token': 5848,
|
| 122 |
+
'token_str': 'talent'},
|
| 123 |
+
{'sequence': '[CLS] catch no prisoners [SEP]',
|
| 124 |
+
'score': 5.3481446229852736e-05,
|
| 125 |
+
'token': 5895,
|
| 126 |
+
'token_str': 'prisoners'}]
|
| 127 |
+
|
| 128 |
+
>>> nlp("confirm plus [MASK]")
|
| 129 |
+
|
| 130 |
+
[{'sequence': '[CLS] confirm plus chop [SEP]',
|
| 131 |
+
'score': 0.992355227470398,
|
| 132 |
+
'token': 24494,
|
| 133 |
+
'token_str': 'chop'},
|
| 134 |
+
{'sequence': '[CLS] confirm plus one [SEP]',
|
| 135 |
+
'score': 0.0037301010452210903,
|
| 136 |
+
'token': 2028,
|
| 137 |
+
'token_str': 'one'},
|
| 138 |
+
{'sequence': '[CLS] confirm plus minus [SEP]',
|
| 139 |
+
'score': 0.0014284878270700574,
|
| 140 |
+
'token': 15718,
|
| 141 |
+
'token_str': 'minus'},
|
| 142 |
+
{'sequence': '[CLS] confirm plus 1 [SEP]',
|
| 143 |
+
'score': 0.0011354683665558696,
|
| 144 |
+
'token': 1015,
|
| 145 |
+
'token_str': '1'},
|
| 146 |
+
{'sequence': '[CLS] confirm plus chopped [SEP]',
|
| 147 |
+
'score': 0.0003804611915256828,
|
| 148 |
+
'token': 24881,
|
| 149 |
+
'token_str': 'chopped'}]
|
| 150 |
+
|
| 151 |
+
>>> nlp("die [MASK] must try")
|
| 152 |
+
|
| 153 |
+
[{'sequence': '[CLS] die die must try [SEP]',
|
| 154 |
+
'score': 0.9552758932113647,
|
| 155 |
+
'token': 3280,
|
| 156 |
+
'token_str': 'die'},
|
| 157 |
+
{'sequence': '[CLS] die also must try [SEP]',
|
| 158 |
+
'score': 0.03644804656505585,
|
| 159 |
+
'token': 2036,
|
| 160 |
+
'token_str': 'also'},
|
| 161 |
+
{'sequence': '[CLS] die liao must try [SEP]',
|
| 162 |
+
'score': 0.003282855963334441,
|
| 163 |
+
'token': 727,
|
| 164 |
+
'token_str': 'liao'},
|
| 165 |
+
{'sequence': '[CLS] die already must try [SEP]',
|
| 166 |
+
'score': 0.0004937972989864647,
|
| 167 |
+
'token': 2525,
|
| 168 |
+
'token_str': 'already'},
|
| 169 |
+
{'sequence': '[CLS] die hard must try [SEP]',
|
| 170 |
+
'score': 0.0003659659414552152,
|
| 171 |
+
'token': 2524,
|
| 172 |
+
'token_str': 'hard'}]
|
| 173 |
+
|
| 174 |
+
```
|
| 175 |
+
|
| 176 |
+
Here is how to use this model to get the features of a given text in PyTorch:
|
| 177 |
+
```python
|
| 178 |
+
from transformers import BertTokenizer, BertModel
|
| 179 |
+
tokenizer = BertTokenizer.from_pretrained('zanelim/singbert')
|
| 180 |
+
model = BertModel.from_pretrained("zanelim/singbert")
|
| 181 |
+
text = "Replace me by any text you'd like."
|
| 182 |
+
encoded_input = tokenizer(text, return_tensors='pt')
|
| 183 |
+
output = model(**encoded_input)
|
| 184 |
+
```
|
| 185 |
+
|
| 186 |
+
and in TensorFlow:
|
| 187 |
+
```python
|
| 188 |
+
from transformers import BertTokenizer, TFBertModel
|
| 189 |
+
tokenizer = BertTokenizer.from_pretrained("zanelim/singbert")
|
| 190 |
+
model = TFBertModel.from_pretrained("zanelim/singbert")
|
| 191 |
+
text = "Replace me by any text you'd like."
|
| 192 |
+
encoded_input = tokenizer(text, return_tensors='tf')
|
| 193 |
+
output = model(encoded_input)
|
| 194 |
+
```
|
| 195 |
+
|
| 196 |
+
#### Limitations and bias
|
| 197 |
+
This model was finetuned on colloquial Singlish and Manglish corpus, hence it is best applied on downstream tasks involving the main
|
| 198 |
+
constituent languages- english, mandarin, malay. Also, as the training data is mainly from forums, beware of existing inherent bias.
|
| 199 |
+
|
| 200 |
+
## Training data
|
| 201 |
+
Colloquial singlish and manglish (both are a mixture of English, Mandarin, Tamil, Malay, and other local dialects like Hokkien, Cantonese or Teochew)
|
| 202 |
+
corpus. The corpus is collected from subreddits- `r/singapore` and `r/malaysia`, and forums such as `hardwarezone`.
|
| 203 |
+
|
| 204 |
+
## Training procedure
|
| 205 |
+
|
| 206 |
+
Initialized with [bert base uncased](https://github.com/google-research/bert#pre-trained-models) vocab and checkpoints (pre-trained weights).
|
| 207 |
+
Top 1000 custom vocab tokens (non-overlapped with original bert vocab) were further extracted from training data and filled into unused tokens in original bert vocab.
|
| 208 |
+
|
| 209 |
+
Pre-training was further finetuned on training data with the following hyperparameters
|
| 210 |
+
* train_batch_size: 512
|
| 211 |
+
* max_seq_length: 128
|
| 212 |
+
* num_train_steps: 300000
|
| 213 |
+
* num_warmup_steps: 5000
|
| 214 |
+
* learning_rate: 2e-5
|
| 215 |
+
* hardware: TPU v3-8
|