--- library_name: transformers license: apache-2.0 base_model: distilbert-base-cased tags: - generated_from_trainer metrics: - precision - recall model-index: - name: bert-emotion results: [] --- # bert-emotion This model is a fine-tuned version of [distilbert-base-cased](https://huggingface.co/distilbert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.0958 - Precision: 0.7192 - Recall: 0.7219 - Fscore: 0.7200 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Fscore | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.8487 | 1.0 | 815 | 0.9013 | 0.6936 | 0.6375 | 0.6462 | | 0.5456 | 2.0 | 1630 | 0.9633 | 0.7383 | 0.7153 | 0.7253 | | 0.2589 | 3.0 | 2445 | 1.0958 | 0.7192 | 0.7219 | 0.7200 | ### Framework versions - Transformers 4.51.1 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1