Update the model card
Browse files
README.md
CHANGED
|
@@ -5,4 +5,47 @@ language:
|
|
| 5 |
base_model:
|
| 6 |
- meta-llama/Llama-3.2-11B-Vision-Instruct
|
| 7 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
| 5 |
base_model:
|
| 6 |
- meta-llama/Llama-3.2-11B-Vision-Instruct
|
| 7 |
---
|
| 8 |
+
## Introduction
|
| 9 |
+
This model originates from [Xkev/Llama-3.2V-11B-cot](https://huggingface.co/Xkev/Llama-3.2V-11B-cot). This repository simply quantizes the model into the NF4 format using the bitsandbytes library.
|
| 10 |
+
All credit goes to the original repository.
|
| 11 |
+
|
| 12 |
+
## Usage
|
| 13 |
+
```
|
| 14 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor, BitsAndBytesConfig
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
# Load model
|
| 19 |
+
model_id = "zhangsongbo365/Llama-3.2V-11B-cot-nf4"
|
| 20 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
| 21 |
+
model_id,
|
| 22 |
+
use_safetensors=True,
|
| 23 |
+
device_map="cuda:0",
|
| 24 |
+
trust_remote_code=True
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Load tokenizer
|
| 28 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
| 29 |
+
|
| 30 |
+
# Caption a local image
|
| 31 |
+
IMAGE = Image.open("1.png").convert("RGB") # 改为你的实际图片路径
|
| 32 |
+
PROMPT = """<|begin_of_text|><|start_header_id|>user<|end_header_id|>
|
| 33 |
+
Caption this image:
|
| 34 |
+
<|image|><|eot_id|><|start_header_id|>assistant<|end_header_id|>
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
inputs = processor(IMAGE, PROMPT, return_tensors="pt").to(model.device)
|
| 38 |
+
prompt_tokens = len(inputs['input_ids'][0])
|
| 39 |
+
print(f"Prompt tokens: {prompt_tokens}")
|
| 40 |
+
|
| 41 |
+
t0 = time.time()
|
| 42 |
+
generate_ids = model.generate(**inputs, max_new_tokens=256)
|
| 43 |
+
t1 = time.time()
|
| 44 |
+
total_time = t1 - t0
|
| 45 |
+
generated_tokens = len(generate_ids[0]) - prompt_tokens
|
| 46 |
+
time_per_token = generated_tokens/total_time
|
| 47 |
+
print(f"Generated {generated_tokens} tokens in {total_time:.3f} s ({time_per_token:.3f} tok/s)")
|
| 48 |
+
|
| 49 |
+
output = processor.decode(generate_ids[0][prompt_tokens:]).replace('<|eot_id|>', '')
|
| 50 |
+
```
|
| 51 |
|