--- license: mit datasets: - seniichev/amazon-fashion-2023-full language: - en base_model: - Qwen/Qwen2.5-7B-Instruct --- # zjkarina/omniRecsysLLM_idmodality Recommendation model based on ID modality for Amazon Fashion. ## Description This model uses item ID embeddings to generate recommendations based on users’ purchase history. ## Architecture - **Base model**: Qwen2.5-Omni-7B - **Item vocabulary size**: 709,036 - **ID embedding dimension**: 512 - **Fusion head dimension**: 1024 - **Dataset**: Amazon Fashion 2023 Full ## Использование ```python from any2any_trainer.models.recommendation import RecommendationModel # Load model model = RecommendationModel.from_pretrained("zjkarina/omniRecsysLLM_idmodality") # Generate recommendations recommendations = model.predict_next_item( text="The user bought jeans and a t-shirt", id_ids=[12345, 67890], # Item IDs from purchase history top_k=5 ) ``` ## Training The model was trained on the Amazon Fashion 2023 dataset using the ID modality.