File size: 4,530 Bytes
29b57ea
 
d41008b
 
29b57ea
 
 
d41008b
29b57ea
 
d41008b
29b57ea
 
 
d41008b
29b57ea
 
 
 
 
d41008b
 
29b57ea
 
 
 
 
 
d41008b
29b57ea
 
 
 
 
d41008b
29b57ea
d41008b
29b57ea
d41008b
 
29b57ea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
---
library_name: transformers
language:
- eu
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_17_0
metrics:
- wer
model-index:
- name: Whisper Large-V3 Basque
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: mozilla-foundation/common_voice_17_0 eu
      type: mozilla-foundation/common_voice_17_0
      config: eu
      split: test
      args: eu
    metrics:
    - name: Wer
      type: wer
      value: 6.386272857195206
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large-V3 Basque

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the mozilla-foundation/common_voice_17_0 eu dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2570
- Wer: 6.3863

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3.75e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 40000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step  | Validation Loss | Wer    |
|:-------------:|:-------:|:-----:|:---------------:|:------:|
| 0.0674        | 2.3474  | 1000  | 0.1613          | 9.7732 |
| 0.0299        | 4.6948  | 2000  | 0.1633          | 8.9771 |
| 0.0164        | 7.0423  | 3000  | 0.1828          | 8.6381 |
| 0.0098        | 9.3897  | 4000  | 0.1870          | 8.2524 |
| 0.0105        | 11.7371 | 5000  | 0.1912          | 8.4146 |
| 0.0085        | 14.0845 | 6000  | 0.2029          | 8.5914 |
| 0.0076        | 16.4319 | 7000  | 0.2084          | 8.1296 |
| 0.0059        | 18.7793 | 8000  | 0.2028          | 8.1003 |
| 0.0059        | 21.1268 | 9000  | 0.2066          | 8.3404 |
| 0.0049        | 23.4742 | 10000 | 0.2154          | 8.3972 |
| 0.0044        | 25.8216 | 11000 | 0.2136          | 8.0087 |
| 0.0012        | 28.1690 | 12000 | 0.2111          | 7.3116 |
| 0.0038        | 30.5164 | 13000 | 0.2219          | 8.1471 |
| 0.0025        | 32.8638 | 14000 | 0.2155          | 7.6679 |
| 0.0021        | 35.2113 | 15000 | 0.2239          | 7.4893 |
| 0.0021        | 37.5587 | 16000 | 0.2277          | 7.8337 |
| 0.0017        | 39.9061 | 17000 | 0.2254          | 7.8108 |
| 0.0012        | 42.2535 | 18000 | 0.2247          | 7.2914 |
| 0.0021        | 44.6009 | 19000 | 0.2301          | 8.0005 |
| 0.0016        | 46.9484 | 20000 | 0.2346          | 7.7568 |
| 0.001         | 49.2958 | 21000 | 0.2283          | 7.3940 |
| 0.0021        | 51.6432 | 22000 | 0.2297          | 7.5589 |
| 0.0013        | 53.9906 | 23000 | 0.2324          | 7.6029 |
| 0.0004        | 56.3380 | 24000 | 0.2333          | 6.9369 |
| 0.0003        | 58.6854 | 25000 | 0.2254          | 6.8114 |
| 0.0016        | 61.0329 | 26000 | 0.2393          | 7.6688 |
| 0.0001        | 63.3803 | 27000 | 0.2279          | 6.8819 |
| 0.0           | 65.7277 | 28000 | 0.2320          | 6.8269 |
| 0.0           | 68.0751 | 29000 | 0.2421          | 6.5832 |
| 0.0           | 70.4225 | 30000 | 0.2481          | 6.4770 |
| 0.0           | 72.7700 | 31000 | 0.2532          | 6.4000 |
| 0.0           | 75.1174 | 32000 | 0.2570          | 6.3863 |
| 0.0011        | 77.4648 | 33000 | 0.2388          | 7.2392 |
| 0.0           | 79.8122 | 34000 | 0.2403          | 6.8223 |
| 0.0           | 82.1596 | 35000 | 0.2477          | 6.6639 |
| 0.0           | 84.5070 | 36000 | 0.2528          | 6.6071 |
| 0.0001        | 86.8545 | 37000 | 0.2562          | 6.5503 |
| 0.0           | 89.2019 | 38000 | 0.2597          | 6.4971 |
| 0.0           | 91.5493 | 39000 | 0.2623          | 6.4632 |
| 0.0           | 93.8967 | 40000 | 0.2636          | 6.4568 |


### Framework versions

- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1