add sd3_model.py
#2
by
heekhero
- opened
- model_index.json +1 -1
- pipelines/__init__.py +0 -0
- pipelines/sd3_teefusion_pipeline.py +0 -264
- {pipelines → transformer}/sd3_model.py +0 -0
model_index.json
CHANGED
@@ -30,7 +30,7 @@
|
|
30 |
"T5Tokenizer"
|
31 |
],
|
32 |
"transformer": [
|
33 |
-
"
|
34 |
"SD3Transformer2DModel"
|
35 |
],
|
36 |
"vae": [
|
|
|
30 |
"T5Tokenizer"
|
31 |
],
|
32 |
"transformer": [
|
33 |
+
"sd3_model",
|
34 |
"SD3Transformer2DModel"
|
35 |
],
|
36 |
"vae": [
|
pipelines/__init__.py
DELETED
File without changes
|
pipelines/sd3_teefusion_pipeline.py
DELETED
@@ -1,264 +0,0 @@
|
|
1 |
-
# Copyright (C) 2025 AIDC-AI
|
2 |
-
# This project is licensed under the Attribution-NonCommercial 4.0 International
|
3 |
-
# License (SPDX-License-Identifier: CC-BY-NC-4.0).
|
4 |
-
|
5 |
-
# Unless required by applicable law or agreed to in writing, software
|
6 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
7 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
8 |
-
# See the License for the specific language governing permissions and
|
9 |
-
# limitations under the License.
|
10 |
-
|
11 |
-
import os
|
12 |
-
import torch
|
13 |
-
import torch.nn as nn
|
14 |
-
|
15 |
-
from typing import Union, List, Any, Optional
|
16 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
17 |
-
from PIL import Image
|
18 |
-
from diffusers import DiffusionPipeline, AutoencoderKL
|
19 |
-
from transformers import CLIPTextModelWithProjection, T5EncoderModel, CLIPTokenizer, T5Tokenizer
|
20 |
-
|
21 |
-
def get_noise(
|
22 |
-
num_samples: int,
|
23 |
-
channel: int,
|
24 |
-
height: int,
|
25 |
-
width: int,
|
26 |
-
device: torch.device,
|
27 |
-
dtype: torch.dtype,
|
28 |
-
seed: int,
|
29 |
-
):
|
30 |
-
return torch.randn(
|
31 |
-
num_samples,
|
32 |
-
channel,
|
33 |
-
height // 8,
|
34 |
-
width // 8,
|
35 |
-
device=device,
|
36 |
-
dtype=dtype,
|
37 |
-
generator=torch.Generator(device=device).manual_seed(seed),
|
38 |
-
)
|
39 |
-
|
40 |
-
def get_clip_prompt_embeds(
|
41 |
-
clip_tokenizers,
|
42 |
-
clip_text_encoders,
|
43 |
-
prompt: Union[str, List[str]],
|
44 |
-
num_images_per_prompt: int = 1,
|
45 |
-
device: Optional[torch.device] = None,
|
46 |
-
clip_skip: Optional[int] = None,
|
47 |
-
clip_model_index: int = 0,
|
48 |
-
):
|
49 |
-
|
50 |
-
tokenizer_max_length = 77
|
51 |
-
tokenizer = clip_tokenizers[clip_model_index]
|
52 |
-
text_encoder = clip_text_encoders[clip_model_index]
|
53 |
-
|
54 |
-
batch_size = len(prompt)
|
55 |
-
|
56 |
-
text_inputs = tokenizer(
|
57 |
-
prompt,
|
58 |
-
padding="max_length",
|
59 |
-
max_length=tokenizer_max_length,
|
60 |
-
truncation=True,
|
61 |
-
return_tensors="pt",
|
62 |
-
)
|
63 |
-
|
64 |
-
text_input_ids = text_inputs.input_ids
|
65 |
-
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
66 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
67 |
-
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
|
68 |
-
|
69 |
-
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
70 |
-
pooled_prompt_embeds = prompt_embeds[0]
|
71 |
-
|
72 |
-
if clip_skip is None:
|
73 |
-
prompt_embeds = prompt_embeds.hidden_states[-2]
|
74 |
-
else:
|
75 |
-
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
76 |
-
|
77 |
-
prompt_embeds = prompt_embeds.to(dtype=text_encoder.dtype, device=device)
|
78 |
-
|
79 |
-
_, seq_len, _ = prompt_embeds.shape
|
80 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
81 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
82 |
-
|
83 |
-
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
84 |
-
pooled_prompt_embeds = pooled_prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
85 |
-
|
86 |
-
return prompt_embeds, pooled_prompt_embeds
|
87 |
-
|
88 |
-
def get_t5_prompt_embeds(
|
89 |
-
tokenizer_3,
|
90 |
-
text_encoder_3,
|
91 |
-
prompt: Union[str, List[str]] = None,
|
92 |
-
num_images_per_prompt: int = 1,
|
93 |
-
max_sequence_length: int = 256,
|
94 |
-
device: Optional[torch.device] = None,
|
95 |
-
dtype: Optional[torch.dtype] = None,
|
96 |
-
):
|
97 |
-
|
98 |
-
tokenizer_max_length = 77
|
99 |
-
batch_size = len(prompt)
|
100 |
-
|
101 |
-
text_inputs = tokenizer_3(
|
102 |
-
prompt,
|
103 |
-
padding="max_length",
|
104 |
-
max_length=max_sequence_length,
|
105 |
-
truncation=True,
|
106 |
-
add_special_tokens=True,
|
107 |
-
return_tensors="pt",
|
108 |
-
)
|
109 |
-
text_input_ids = text_inputs.input_ids
|
110 |
-
untruncated_ids = tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
111 |
-
|
112 |
-
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
113 |
-
removed_text = tokenizer_3.batch_decode(untruncated_ids[:, tokenizer_max_length - 1 : -1])
|
114 |
-
|
115 |
-
prompt_embeds = text_encoder_3(text_input_ids.to(device))[0]
|
116 |
-
|
117 |
-
dtype = text_encoder_3.dtype
|
118 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
119 |
-
|
120 |
-
_, seq_len, _ = prompt_embeds.shape
|
121 |
-
|
122 |
-
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
123 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
124 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
125 |
-
|
126 |
-
return prompt_embeds
|
127 |
-
|
128 |
-
|
129 |
-
@torch.no_grad()
|
130 |
-
def encode_text(clip_tokenizers, clip_text_encoders, tokenizer_3, text_encoder_3, prompt, device, max_sequence_length=256):
|
131 |
-
|
132 |
-
prompt_embed, pooled_prompt_embed = get_clip_prompt_embeds(clip_tokenizers, clip_text_encoders, prompt=prompt, device=device, clip_model_index=0)
|
133 |
-
prompt_2_embed, pooled_prompt_2_embed = get_clip_prompt_embeds(clip_tokenizers, clip_text_encoders, prompt=prompt, device=device, clip_model_index=1)
|
134 |
-
clip_prompt_embeds = torch.cat([prompt_embed, prompt_2_embed], dim=-1)
|
135 |
-
|
136 |
-
t5_prompt_embed = get_t5_prompt_embeds(tokenizer_3, text_encoder_3, prompt=prompt, max_sequence_length=max_sequence_length, device=device)
|
137 |
-
|
138 |
-
clip_prompt_embeds = torch.nn.functional.pad(clip_prompt_embeds, (0, t5_prompt_embed.shape[-1] - clip_prompt_embeds.shape[-1]))
|
139 |
-
|
140 |
-
prompt_embeds = torch.cat([clip_prompt_embeds, t5_prompt_embed], dim=-2)
|
141 |
-
pooled_prompt_embeds = torch.cat([pooled_prompt_embed, pooled_prompt_2_embed], dim=-1)
|
142 |
-
|
143 |
-
return prompt_embeds, pooled_prompt_embeds
|
144 |
-
|
145 |
-
|
146 |
-
class TeEFusionSD3Pipeline(DiffusionPipeline, ConfigMixin):
|
147 |
-
|
148 |
-
@register_to_config
|
149 |
-
def __init__(
|
150 |
-
self,
|
151 |
-
transformer: nn.Module,
|
152 |
-
text_encoder: CLIPTextModelWithProjection,
|
153 |
-
text_encoder_2: CLIPTextModelWithProjection,
|
154 |
-
text_encoder_3: T5EncoderModel,
|
155 |
-
tokenizer: CLIPTokenizer,
|
156 |
-
tokenizer_2: CLIPTokenizer,
|
157 |
-
tokenizer_3: T5Tokenizer,
|
158 |
-
vae: AutoencoderKL,
|
159 |
-
scheduler: Any
|
160 |
-
):
|
161 |
-
super().__init__()
|
162 |
-
|
163 |
-
self.register_modules(
|
164 |
-
transformer=transformer,
|
165 |
-
text_encoder=text_encoder,
|
166 |
-
text_encoder_2=text_encoder_2,
|
167 |
-
text_encoder_3=text_encoder_3,
|
168 |
-
tokenizer=tokenizer,
|
169 |
-
tokenizer_2=tokenizer_2,
|
170 |
-
tokenizer_3=tokenizer_3,
|
171 |
-
vae=vae,
|
172 |
-
scheduler=scheduler
|
173 |
-
)
|
174 |
-
|
175 |
-
|
176 |
-
@classmethod
|
177 |
-
def from_pretrained(
|
178 |
-
cls,
|
179 |
-
pretrained_model_name_or_path: Union[str, os.PathLike],
|
180 |
-
**kwargs,
|
181 |
-
) -> "TeEFusionSD3Pipeline":
|
182 |
-
|
183 |
-
return super().from_pretrained(pretrained_model_name_or_path, **kwargs)
|
184 |
-
|
185 |
-
def save_pretrained(self, save_directory: Union[str, os.PathLike]):
|
186 |
-
super().save_pretrained(save_directory)
|
187 |
-
|
188 |
-
@torch.no_grad()
|
189 |
-
def __call__(
|
190 |
-
self,
|
191 |
-
prompt: Union[str, List[str]],
|
192 |
-
num_inference_steps: int = 50,
|
193 |
-
guidance_scale: float = 7.5,
|
194 |
-
latents: torch.FloatTensor = None,
|
195 |
-
height: int = 1024,
|
196 |
-
width: int = 1024,
|
197 |
-
seed: int = 0,
|
198 |
-
):
|
199 |
-
if isinstance(prompt, str):
|
200 |
-
prompt = [prompt]
|
201 |
-
|
202 |
-
device = self.transformer.device
|
203 |
-
|
204 |
-
clip_tokenizers = [self.tokenizer, self.tokenizer_2]
|
205 |
-
clip_text_encoders = [self.text_encoder, self.text_encoder_2]
|
206 |
-
|
207 |
-
prompt_embeds, pooled_prompt_embeds = encode_text(clip_tokenizers, clip_text_encoders, self.tokenizer_3, self.text_encoder_3, prompt, device)
|
208 |
-
|
209 |
-
_, negative_pooled_prompt_embeds = encode_text(clip_tokenizers, clip_text_encoders, self.tokenizer_3, self.text_encoder_3, [''], device)
|
210 |
-
|
211 |
-
|
212 |
-
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
213 |
-
timesteps = self.scheduler.timesteps
|
214 |
-
|
215 |
-
bs = len(prompt)
|
216 |
-
channels = self.transformer.config.in_channels
|
217 |
-
height = 16 * (height // 16)
|
218 |
-
width = 16 * (width // 16)
|
219 |
-
|
220 |
-
# prepare input
|
221 |
-
if latents is None:
|
222 |
-
latents = get_noise(
|
223 |
-
bs,
|
224 |
-
channels,
|
225 |
-
height,
|
226 |
-
width,
|
227 |
-
device=device,
|
228 |
-
dtype=self.transformer.dtype,
|
229 |
-
seed=seed,
|
230 |
-
)
|
231 |
-
|
232 |
-
for i, t in enumerate(timesteps):
|
233 |
-
noise_pred = self.transformer(
|
234 |
-
hidden_states=latents,
|
235 |
-
timestep=t.reshape(1),
|
236 |
-
encoder_hidden_states=prompt_embeds,
|
237 |
-
pooled_projections=pooled_prompt_embeds,
|
238 |
-
return_dict=False,
|
239 |
-
txt_align_guidance=torch.tensor(data=(guidance_scale,), dtype=self.transformer.dtype, device=self.transformer.device) * 1000.,
|
240 |
-
txt_align_vec=pooled_prompt_embeds - negative_pooled_prompt_embeds
|
241 |
-
)[0]
|
242 |
-
|
243 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
244 |
-
|
245 |
-
x = latents.float()
|
246 |
-
|
247 |
-
with torch.no_grad():
|
248 |
-
with torch.autocast(device_type=device.type, dtype=torch.float32):
|
249 |
-
if hasattr(self.vae.config, 'scaling_factor') and self.vae.config.scaling_factor is not None:
|
250 |
-
x = x / self.vae.config.scaling_factor
|
251 |
-
if hasattr(self.vae.config, 'shift_factor') and self.vae.config.shift_factor is not None:
|
252 |
-
x = x + self.vae.config.shift_factor
|
253 |
-
x = self.vae.decode(x, return_dict=False)[0]
|
254 |
-
|
255 |
-
# bring into PIL format and save
|
256 |
-
x = (x / 2 + 0.5).clamp(0, 1)
|
257 |
-
x = x.cpu().permute(0, 2, 3, 1).float().numpy()
|
258 |
-
images = (x * 255).round().astype("uint8")
|
259 |
-
pil_images = [Image.fromarray(image) for image in images]
|
260 |
-
|
261 |
-
return pil_images
|
262 |
-
|
263 |
-
|
264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{pipelines → transformer}/sd3_model.py
RENAMED
File without changes
|