Model Overview
ππ¨πππ₯ πππ¦π:ElEmperador
Model Description:
ElEmperador is an ORPO-based finetune derived from the Mistral-7B-v0.1 base model.
Evals:
BLEU:0.209
Inference Script:
def generate_response(model_name, input_text, max_new_tokens=50):
    # Load the tokenizer and model from Hugging Face Hub
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # Tokenize the input text
    input_ids = tokenizer(input_text, return_tensors='pt').input_ids
    
    # Generate a response using the model
    with torch.no_grad():
        generated_ids = model.generate(input_ids, max_new_tokens=max_new_tokens)
    
    # Decode the generated tokens into text
    generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
    
    return generated_text
if __name__ == "__main__":
    # Set the model name from Hugging Face Hub
    model_name = "AINovice2005/ElEmperador" 
    input_text = "Hello, how are you?"
    # Generate and print the model's response
    output = generate_response(model_name, input_text)
    
    print(f"Input: {input_text}")
    print(f"Output: {output}")
Results
Firstly,ORPO is a viable RLHF algorithm to improve the performance of your models along with SFT finetuning.Secondly, it also helps in aligning the modelβs outputs more closely with human preferences, leading to more user-friendly and acceptable results.
- Downloads last month
 - 2
 
