⚠️⚠️⚠️
Only for research purpose.
Do not use it for medical purpose.
⚠️⚠️⚠️
This model is an instruction-tuned model of Llama2-70B with our own medical Q&A dataset.
Method
QLoRA
Parameters
- batch_size = 512
 - max_steps = 30000 (around 6.89 epochs)
 - source_max_len = 512
 - target_max_len = 512
 
Training time
1617017 seconds on NVIDIA A100 x 4 (not fully used)
Training procedure
The following bitsandbytes quantization config was used during training:
- quant_method: bitsandbytes
 - load_in_8bit: False
 - load_in_4bit: True
 - llm_int8_threshold: 6.0
 - llm_int8_skip_modules: None
 - llm_int8_enable_fp32_cpu_offload: False
 - llm_int8_has_fp16_weight: False
 - bnb_4bit_quant_type: nf4
 - bnb_4bit_use_double_quant: True
 - bnb_4bit_compute_dtype: bfloat16
 
Framework versions
- PEFT 0.4.0
 
How to cite
本データを利用する場合は以下の文献の引用をご検討ください.
@article{sukeda2023jmedlora,
  title={{JMedLoRA: Medical Domain Adaptation on Japanese Large Language Models using Instruction-tuning}},
  author={Sukeda, Issey and Suzuki, Masahiro and Sakaji, Hiroki and Kodera, Satoshi},
  journal={arXiv preprint arXiv:2310.10083},
  year={2023}
}
- Downloads last month
 - 1
 
	Inference Providers
	NEW
	
	
	This model isn't deployed by any Inference Provider.
	🙋
			
		Ask for provider support