Model Card for sciencebase-metadata-llama3-8b (v 1.0)

Model Details

Field Value
Developed by Quan Quy, Travis Ping, Tudor Garbulet, Chirag Shah, Austin Aguilar
Contact [email protected][email protected][email protected][email protected][email protected]
Funded by U.S. Geological Survey (USGS) & Oak Ridge National Laboratory – ARM Data Center
Model type Autoregressive LLM, instruction-tuned for structured → metadata generation
Base model meta-llama/Llama-3.1-8B-Instruct
Languages English (metadata vocabulary)
Finetuned from unsloth/Meta-Llama-3.1-8B-Instruct

Model Description

Fine-tuned on ≈ 9 000 ScienceBase “data → metadata” pairs to automate creation of FGDC/ISO-style metadata records for scientific datasets.

Model Sources


Uses

Direct Use

Generate schema-compliant metadata text from a JSON/CSV representation of a ScienceBase item.

Downstream Use

Integrate as a micro-service in data-repository pipelines.

Out-of-Scope

Open-ended content generation, or any application outside metadata curation.


Bias, Risks, and Limitations

  • Domain-specific bias toward ScienceBase field names.
  • Possible hallucination of fields when prompts are underspecified.

Training Details

Training Data

  • ~9 k ScienceBase records with curated metadata.

Training Procedure

Hyper-parameter Value
Max sequence length 100 000
Precision fp16 / bf16 (auto)
Quantisation 4-bit QLoRA (load_in_4bit=True)
LoRA rank / α 16 / 16
Target modules q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj
Optimiser adamw_8bit
LR / schedule 2 × 10⁻⁴, linear
Epochs 1
Effective batch 4 (1 GPU × grad-acc 4)
Trainer trl SFTTrainer + peft 0.15.2

Hardware & Runtime

Field Value
GPU 1 × NVIDIA A100 80 GB
Total training hours ~120 hours
Cloud/HPC provider ARM Cumulus HPC

Software Stack

Package Version
Python 3.12.9
PyTorch 2.6.0 + CUDA 12.4
Transformers 4.51.3
Accelerate 1.6.0
PEFT 0.15.2
Unsloth 2025.3.19
BitsAndBytes 0.45.5
TRL 0.15.2
Xformers 0.0.29.post3
Datasets 3.5.0

Evaluation

Evaluation still in progress.


Technical Specifications

Architecture & Objective

QLoRA-tuned Llama-3.1-8B-Instruct; causal-LM objective with structured-to-text instruction prompts.


Model Card Authors

Quan Quy, Travis Ping, Tudor Garbulet, Chirag Shah, Austin Aguilar


Downloads last month
29
GGUF
Model size
8B params
Architecture
llama
Hardware compatibility
Log In to view the estimation

4-bit

16-bit

Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ARM-Development/Llama-3.1-8B-tabular-1.0