Paraphrase_IndicBERTv2-MLM-Back-TLM_onfull_FT2
This model is a fine-tuned version of ai4bharat/IndicBERTv2-MLM-Back-TLM on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.6694
- Accuracy: 0.872
- F1: 0.8716
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.448092452817481e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.3163 | 1.0 | 313 | 0.3615 | 0.8485 | 0.8472 |
| 0.2652 | 2.0 | 626 | 0.3545 | 0.867 | 0.8668 |
| 0.1021 | 3.0 | 939 | 0.4961 | 0.864 | 0.8638 |
| 0.0294 | 4.0 | 1252 | 0.6694 | 0.872 | 0.8716 |
| 0.0941 | 5.0 | 1565 | 0.7800 | 0.8665 | 0.8664 |
| 0.058 | 6.0 | 1878 | 0.8815 | 0.8645 | 0.8641 |
| 0.0002 | 7.0 | 2191 | 0.8727 | 0.8655 | 0.8654 |
| 0.004 | 8.0 | 2504 | 0.9035 | 0.8655 | 0.8653 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0
- Downloads last month
- 4
Model tree for Abhi964/Paraphrase_IndicBERTv2-MLM-Back-TLM_onfull_FT2
Base model
ai4bharat/IndicBERTv2-MLM-Back-TLM