BERTscenario5-news-classifier
This model is a fine-tuned version of bert-large-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8235
- Accuracy: 0.7083
- Precision: 0.7158
- Recall: 0.7083
- F1: 0.7108
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|---|---|---|---|---|---|---|---|
| 2.1465 | 1.0 | 10477 | 1.7856 | 0.6152 | 0.6850 | 0.6152 | 0.6321 |
| 1.719 | 2.0 | 20954 | 1.7310 | 0.6627 | 0.7041 | 0.6627 | 0.6712 |
| 1.5376 | 3.0 | 31431 | 1.7194 | 0.6810 | 0.7154 | 0.6810 | 0.6893 |
| 1.378 | 4.0 | 41908 | 1.7624 | 0.7007 | 0.7185 | 0.7007 | 0.7054 |
| 1.2669 | 5.0 | 52385 | 1.8046 | 0.7085 | 0.7164 | 0.7085 | 0.7107 |
| 1.2108 | 6.0 | 62862 | 1.8235 | 0.7083 | 0.7158 | 0.7083 | 0.7108 |
Framework versions
- Transformers 4.57.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 8
Model tree for AbrarAbhinaya/BERTscenario5-news-classifier
Base model
google-bert/bert-large-uncased