roberta-large-ToM1
This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5759
- Accuracy: 0.8736
- F1: 0.8942
- Precision: 0.8774
- Recall: 0.9118
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 2015
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.642 | 1.0 | 93 | 0.3124 | 0.8846 | 0.8966 | 0.9286 | 0.8667 |
| 0.4136 | 2.0 | 186 | 0.2751 | 0.8718 | 0.8810 | 0.9487 | 0.8222 |
| 0.2804 | 3.0 | 279 | 0.2827 | 0.9103 | 0.9263 | 0.88 | 0.9778 |
| 0.1963 | 4.0 | 372 | 0.3018 | 0.8974 | 0.9111 | 0.9111 | 0.9111 |
| 0.1116 | 5.0 | 465 | 0.3308 | 0.9231 | 0.9362 | 0.8980 | 0.9778 |
Framework versions
- Transformers 4.56.0
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 1
Model tree for ActiveYixiao/roberta-large-ToM1
Base model
FacebookAI/roberta-large