sdxlvaev2
Browse files- config.json +0 -38
- diffusion_pytorch_model.safetensors +0 -3
- eval_alchemist.py +469 -279
- eval_alchemist2.py +0 -516
- sdxl_vae_a1111.safetensors +1 -1
- simple_vae/config.json +0 -38
- simple_vae/diffusion_pytorch_model.safetensors +0 -3
- simple_vae_nightly/config.json +0 -38
- simple_vae_nightly/diffusion_pytorch_model.safetensors +0 -3
- train_sdxl_vae_wan.py → src/train_sdxl_vae.py +0 -0
- train_sdxl_vae.py +0 -547
- train_sdxl_vae_full.py +0 -594
- train_sdxl_vae_my.py +0 -507
- train_sdxl_vae_qwen.py +0 -526
- train_sdxl_vae_simple.py +0 -547
- vae/config.json +2 -2
- vae/diffusion_pytorch_model.safetensors +2 -2
- vae_nightly/config.json +0 -38
- vae_nightly/diffusion_pytorch_model.safetensors +0 -3
config.json
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "AutoencoderKL",
|
| 3 |
-
"_diffusers_version": "0.34.0",
|
| 4 |
-
"_name_or_path": "sdxl_vae",
|
| 5 |
-
"act_fn": "silu",
|
| 6 |
-
"block_out_channels": [
|
| 7 |
-
128,
|
| 8 |
-
256,
|
| 9 |
-
512,
|
| 10 |
-
512
|
| 11 |
-
],
|
| 12 |
-
"down_block_types": [
|
| 13 |
-
"DownEncoderBlock2D",
|
| 14 |
-
"DownEncoderBlock2D",
|
| 15 |
-
"DownEncoderBlock2D",
|
| 16 |
-
"DownEncoderBlock2D"
|
| 17 |
-
],
|
| 18 |
-
"force_upcast": false,
|
| 19 |
-
"in_channels": 3,
|
| 20 |
-
"latent_channels": 4,
|
| 21 |
-
"latents_mean": null,
|
| 22 |
-
"latents_std": null,
|
| 23 |
-
"layers_per_block": 2,
|
| 24 |
-
"mid_block_add_attention": true,
|
| 25 |
-
"norm_num_groups": 32,
|
| 26 |
-
"out_channels": 3,
|
| 27 |
-
"sample_size": 512,
|
| 28 |
-
"scaling_factor": 0.13025,
|
| 29 |
-
"shift_factor": null,
|
| 30 |
-
"up_block_types": [
|
| 31 |
-
"UpDecoderBlock2D",
|
| 32 |
-
"UpDecoderBlock2D",
|
| 33 |
-
"UpDecoderBlock2D",
|
| 34 |
-
"UpDecoderBlock2D"
|
| 35 |
-
],
|
| 36 |
-
"use_post_quant_conv": true,
|
| 37 |
-
"use_quant_conv": true
|
| 38 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
diffusion_pytorch_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:03f2412467f6bedce9efeddba5860b5ec0d3267931d14c500d4bd7a878e14cbd
|
| 3 |
-
size 334643268
|
|
|
|
|
|
|
|
|
|
|
|
eval_alchemist.py
CHANGED
|
@@ -1,330 +1,520 @@
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
| 3 |
import torch.nn.functional as F
|
| 4 |
-
import lpips
|
| 5 |
-
from PIL import Image, UnidentifiedImageError
|
| 6 |
-
from tqdm import tqdm
|
| 7 |
from torch.utils.data import Dataset, DataLoader
|
| 8 |
-
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop
|
| 9 |
-
from
|
| 10 |
-
import
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
DEVICE = "cuda"
|
| 14 |
DTYPE = torch.float16
|
| 15 |
-
IMAGE_FOLDER = "/
|
| 16 |
MIN_SIZE = 1280
|
| 17 |
CROP_SIZE = 512
|
| 18 |
BATCH_SIZE = 10
|
| 19 |
MAX_IMAGES = 0
|
| 20 |
NUM_WORKERS = 4
|
| 21 |
-
|
| 22 |
-
SAMPLES_FOLDER = "vaetest"
|
| 23 |
|
| 24 |
-
# Список VAE для тестирования
|
| 25 |
VAE_LIST = [
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
#
|
| 29 |
-
#
|
| 30 |
-
#
|
| 31 |
-
#
|
| 32 |
-
#
|
| 33 |
-
#
|
| 34 |
-
#
|
| 35 |
-
#
|
| 36 |
-
("
|
| 37 |
-
("
|
| 38 |
-
("
|
| 39 |
-
("
|
| 40 |
-
|
|
|
|
| 41 |
]
|
| 42 |
|
| 43 |
-
# --------------------------- Sobel Edge Detection ---------------------------
|
| 44 |
-
# Определяем фильтры Собеля глобально
|
| 45 |
-
_sobel_kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).view(1, 1, 3, 3)
|
| 46 |
-
_sobel_ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32).view(1, 1, 3, 3)
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
"""
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
"""
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
| 77 |
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
class ImageFolderDataset(Dataset):
|
| 80 |
-
def __init__(self, root_dir, extensions=(
|
| 81 |
-
|
| 82 |
-
self.min_size = min_size
|
| 83 |
-
self.crop_size = crop_size
|
| 84 |
-
self.paths = []
|
| 85 |
-
|
| 86 |
-
print("Сканирование папки...")
|
| 87 |
for root, _, files in os.walk(root_dir):
|
| 88 |
for fname in files:
|
| 89 |
if fname.lower().endswith(extensions):
|
| 90 |
-
|
| 91 |
-
|
| 92 |
if limit:
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
print("Проверка изображений...")
|
| 96 |
valid = []
|
| 97 |
-
for p in tqdm(
|
| 98 |
try:
|
| 99 |
with Image.open(p) as im:
|
| 100 |
im.verify()
|
| 101 |
valid.append(p)
|
| 102 |
-
except:
|
| 103 |
-
|
|
|
|
|
|
|
|
|
|
| 104 |
self.paths = valid
|
| 105 |
-
|
| 106 |
-
if len(self.paths) == 0:
|
| 107 |
-
raise RuntimeError(f"Не найдено валидных изображений в {root_dir}")
|
| 108 |
-
|
| 109 |
-
random.shuffle(self.paths)
|
| 110 |
print(f"Найдено {len(self.paths)} изображений")
|
| 111 |
-
|
| 112 |
self.transform = Compose([
|
| 113 |
-
Resize(min_size
|
| 114 |
CenterCrop(crop_size),
|
| 115 |
-
ToTensor(),
|
| 116 |
])
|
| 117 |
-
|
| 118 |
def __len__(self):
|
| 119 |
return len(self.paths)
|
| 120 |
-
|
| 121 |
def __getitem__(self, idx):
|
| 122 |
-
|
| 123 |
-
with Image.open(path) as img:
|
| 124 |
img = img.convert("RGB")
|
| 125 |
return self.transform(img)
|
| 126 |
|
| 127 |
-
# --------------------------- Функции ---------------------------
|
| 128 |
-
def process(x):
|
| 129 |
-
return x * 2 - 1
|
| 130 |
|
| 131 |
-
|
| 132 |
-
|
|
|
|
|
|
|
| 133 |
|
| 134 |
-
|
| 135 |
-
|
| 136 |
|
| 137 |
-
|
| 138 |
-
@torch.no_grad()
|
| 139 |
-
def tensor_stats(name, x: torch.Tensor):
|
| 140 |
-
finite = torch.isfinite(x)
|
| 141 |
-
fin_ratio = finite.float().mean().item()
|
| 142 |
-
x_f = x[finite]
|
| 143 |
-
minv = x_f.min().item() if x_f.numel() else float('nan')
|
| 144 |
-
maxv = x_f.max().item() if x_f.numel() else float('nan')
|
| 145 |
-
mean = x_f.mean().item() if x_f.numel() else float('nan')
|
| 146 |
-
std = x_f.std().item() if x_f.numel() else float('nan')
|
| 147 |
-
big = (x_f.abs() > 20).float().mean().item() if x_f.numel() else float('nan')
|
| 148 |
-
print(f"[{name}] shape={tuple(x.shape)} dtype={x.dtype} "
|
| 149 |
-
f"finite={fin_ratio:.6f} min={minv:.4g} max={maxv:.4g} mean={mean:.4g} std={std:.4g} |x|>20={big:.6f}")
|
| 150 |
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
""
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
mu, logvar = enc[0], enc[1]
|
| 163 |
-
z = mu
|
| 164 |
-
tensor_stats(f"{name}.mu", mu)
|
| 165 |
-
tensor_stats(f"{name}.logvar", logvar)
|
| 166 |
-
tensor_stats(f"{name}.z_raw", z)
|
| 167 |
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
except Exception as e:
|
| 172 |
-
print(f"⚠️ Ошибка анализа VAE {name}: {e}")
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
-
# --------------------------- Основной код ---------------------------
|
| 176 |
-
if __name__ == "__main__":
|
| 177 |
-
if NUM_SAMPLES_TO_SAVE > 0:
|
| 178 |
-
os.makedirs(SAMPLES_FOLDER, exist_ok=True)
|
| 179 |
-
|
| 180 |
-
dataset = ImageFolderDataset(
|
| 181 |
-
IMAGE_FOLDER,
|
| 182 |
-
extensions=('.png',),
|
| 183 |
-
min_size=MIN_SIZE,
|
| 184 |
-
crop_size=CROP_SIZE,
|
| 185 |
-
limit=MAX_IMAGES
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
dataloader = DataLoader(
|
| 189 |
-
dataset,
|
| 190 |
-
batch_size=BATCH_SIZE,
|
| 191 |
-
shuffle=False,
|
| 192 |
-
num_workers=NUM_WORKERS,
|
| 193 |
-
pin_memory=True,
|
| 194 |
-
drop_last=False
|
| 195 |
-
)
|
| 196 |
-
|
| 197 |
-
lpips_net = lpips.LPIPS(net="vgg").eval().to(DEVICE).requires_grad_(False)
|
| 198 |
-
|
| 199 |
-
print("\nЗагрузка VAE моделей...")
|
| 200 |
-
vaes = []
|
| 201 |
-
names = []
|
| 202 |
-
|
| 203 |
-
for name, vae_class, model_path, subfolder in VAE_LIST:
|
| 204 |
-
try:
|
| 205 |
-
print(f" Загружаю {name}...")
|
| 206 |
-
# Исправлена загрузка для variant
|
| 207 |
-
if "sdxs" in model_path:
|
| 208 |
-
vae = vae_class.from_pretrained(model_path, subfolder=subfolder, variant="fp16")
|
| 209 |
-
else:
|
| 210 |
-
vae = vae_class.from_pretrained(model_path, subfolder=subfolder)
|
| 211 |
-
vae = vae.to(DEVICE, DTYPE).eval()
|
| 212 |
-
vaes.append(vae)
|
| 213 |
-
names.append(name)
|
| 214 |
-
except Exception as e:
|
| 215 |
-
print(f" ❌ Ошибка загрузки {name}: {e}")
|
| 216 |
-
|
| 217 |
-
print("\nОценка метрик...")
|
| 218 |
-
results = {name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "count": 0} for name in names}
|
| 219 |
-
|
| 220 |
-
to_pil = ToPILImage()
|
| 221 |
-
|
| 222 |
-
# >>>>>>>> ОСНОВНЫЕ ИЗМЕНЕНИЯ ЗДЕСЬ (KISS) <<<<<<<<
|
| 223 |
-
with torch.no_grad():
|
| 224 |
-
images_saved = 0 # считаем именно КОЛ-ВО ИЗОБРАЖЕНИЙ, а не сохранённых файлов
|
| 225 |
-
for batch in tqdm(dataloader, desc="Обработка батчей"):
|
| 226 |
-
batch = batch.to(DEVICE) # [B,3,H,W] в [0,1]
|
| 227 |
-
test_inp = process(batch).to(DTYPE) # [-1,1] для энкодера
|
| 228 |
-
# >>> Анализируем латенты каждой VAE на первой итерации
|
| 229 |
-
if images_saved == 0: # только для первого батча, чтобы не засорять лог
|
| 230 |
-
for vae, name in zip(vaes, names):
|
| 231 |
-
analyze_vae_latents(vae, name, test_inp)
|
| 232 |
-
|
| 233 |
-
# 1) считаем реконструкции для всех VAE на весь батч
|
| 234 |
-
recon_list = []
|
| 235 |
-
for vae, name in zip(vaes, names):
|
| 236 |
-
test_inp_vae = test_inp # локальная копия
|
| 237 |
-
#if name == "Wan2.2-T2V-A14B-Diffusers" and test_inp_vae.ndim == 4:
|
| 238 |
-
if (isinstance(vae, AutoencoderKLWan) or isinstance(vae, AutoencoderKLLTXVideo)) and test_inp_vae.ndim == 4:
|
| 239 |
-
test_inp_vae = test_inp_vae.unsqueeze(2) # только для Wan
|
| 240 |
-
latent = vae.encode(test_inp_vae).latent_dist.mode()
|
| 241 |
-
dec = vae.decode(latent).sample.float()
|
| 242 |
-
if dec.ndim == 5:
|
| 243 |
-
dec = dec.squeeze(2)
|
| 244 |
-
recon = deprocess(dec).clamp(0.0, 1.0)
|
| 245 |
-
recon_list.append(recon)
|
| 246 |
-
|
| 247 |
-
# 2) обновляем метрики (по каждой VAE)
|
| 248 |
-
for recon, name in zip(recon_list, names):
|
| 249 |
-
for i in range(batch.shape[0]):
|
| 250 |
-
img_orig = batch[i:i+1]
|
| 251 |
-
img_recon = recon[i:i+1]
|
| 252 |
-
mse = F.mse_loss(img_orig, img_recon).item()
|
| 253 |
-
psnr = 10 * torch.log10(1 / torch.tensor(mse)).item()
|
| 254 |
-
lpips_val = lpips_net(img_orig, img_recon, normalize=True).mean().item()
|
| 255 |
-
edge_loss = compute_edge_loss(img_orig, img_recon)
|
| 256 |
-
results[name]["mse"] += mse
|
| 257 |
-
results[name]["psnr"] += psnr
|
| 258 |
-
results[name]["lpips"] += lpips_val
|
| 259 |
-
results[name]["edge"] += edge_loss
|
| 260 |
-
results[name]["count"] += 1
|
| 261 |
-
|
| 262 |
-
# 3) сохраняем ровно NUM_SAMPLES_TO_SAVE изображений (orig + все VAE + общий коллаж)
|
| 263 |
-
if NUM_SAMPLES_TO_SAVE > 0:
|
| 264 |
-
for i in range(batch.shape[0]):
|
| 265 |
-
if images_saved >= NUM_SAMPLES_TO_SAVE:
|
| 266 |
-
break
|
| 267 |
-
idx_str = f"{images_saved + 1:03d}"
|
| 268 |
-
|
| 269 |
-
# original
|
| 270 |
-
orig_pil = to_pil(batch[i].detach().float().cpu())
|
| 271 |
-
orig_pil.save(os.path.join(SAMPLES_FOLDER, f"{idx_str}_orig.png"))
|
| 272 |
-
|
| 273 |
-
# per-VAE decodes
|
| 274 |
-
tiles = [orig_pil]
|
| 275 |
-
for recon, name in zip(recon_list, names):
|
| 276 |
-
recon_pil = to_pil(recon[i].detach().cpu())
|
| 277 |
-
recon_pil.save(os.path.join(
|
| 278 |
-
SAMPLES_FOLDER, f"{idx_str}_decoded_{_sanitize_name(name)}.png"
|
| 279 |
-
))
|
| 280 |
-
tiles.append(recon_pil)
|
| 281 |
-
|
| 282 |
-
# общий коллаж: [orig | vae1 | vae2 | ...]
|
| 283 |
-
collage_w = CROP_SIZE * len(tiles)
|
| 284 |
-
collage_h = CROP_SIZE
|
| 285 |
-
collage = Image.new("RGB", (collage_w, collage_h))
|
| 286 |
-
x = 0
|
| 287 |
-
for tile in tiles:
|
| 288 |
-
collage.paste(tile, (x, 0))
|
| 289 |
-
x += CROP_SIZE
|
| 290 |
-
collage.save(os.path.join(SAMPLES_FOLDER, f"{idx_str}_all.png"))
|
| 291 |
-
|
| 292 |
-
images_saved += 1
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# Усреднение результатов
|
| 296 |
-
for name in names:
|
| 297 |
-
count = results[name]["count"]
|
| 298 |
-
results[name]["mse"] /= count
|
| 299 |
-
results[name]["psnr"] /= count
|
| 300 |
-
results[name]["lpips"] /= count
|
| 301 |
-
results[name]["edge"] /= count
|
| 302 |
-
|
| 303 |
-
# Вывод абсолютных значений
|
| 304 |
-
print("\n=== Абсолютные значения ===")
|
| 305 |
-
for name in names:
|
| 306 |
-
print(f"{name:30s}: MSE: {results[name]['mse']:.3e}, PSNR: {results[name]['psnr']:.4f}, "
|
| 307 |
-
f"LPIPS: {results[name]['lpips']:.4f}, Edge: {results[name]['edge']:.4f}")
|
| 308 |
-
|
| 309 |
-
# Вывод таблицы с процентами
|
| 310 |
-
print("\n=== Сравнение с первой моделью (%) ===")
|
| 311 |
-
print(f"| {'Модель':30s} | {'MSE':>10s} | {'PSNR':>10s} | {'LPIPS':>10s} | {'Edge':>10s} |")
|
| 312 |
-
print(f"|{'-'*32}|{'-'*12}|{'-'*12}|{'-'*12}|{'-'*12}|")
|
| 313 |
-
|
| 314 |
-
baseline = names[0]
|
| 315 |
-
for name in names:
|
| 316 |
-
# Для MSE, LPIPS и Edge: меньше = лучше, поэтому инвертируем
|
| 317 |
-
mse_pct = (results[baseline]["mse"] / results[name]["mse"]) * 100
|
| 318 |
-
# Для PSNR: больше = лучше
|
| 319 |
-
psnr_pct = (results[name]["psnr"] / results[baseline]["psnr"]) * 100
|
| 320 |
-
# Для LPIPS и Edge: меньше = лучше
|
| 321 |
-
lpips_pct = (results[baseline]["lpips"] / results[name]["lpips"]) * 100
|
| 322 |
-
edge_pct = (results[baseline]["edge"] / results[name]["edge"]) * 100
|
| 323 |
-
|
| 324 |
if name == baseline:
|
| 325 |
-
print(f"| {name:
|
| 326 |
else:
|
| 327 |
-
print(f"| {name:
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
+
import json
|
| 3 |
+
import random
|
| 4 |
+
from typing import Dict, List, Tuple, Optional, Any
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from tqdm import tqdm
|
| 9 |
+
|
| 10 |
import torch
|
| 11 |
import torch.nn.functional as F
|
|
|
|
|
|
|
|
|
|
| 12 |
from torch.utils.data import Dataset, DataLoader
|
| 13 |
+
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop
|
| 14 |
+
from torchvision.utils import save_image
|
| 15 |
+
import lpips
|
| 16 |
|
| 17 |
+
from diffusers import (
|
| 18 |
+
AutoencoderKL,
|
| 19 |
+
AutoencoderKLWan,
|
| 20 |
+
AutoencoderKLLTXVideo,
|
| 21 |
+
AutoencoderKLQwenImage
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
from scipy.stats import skew, kurtosis
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# ========================== Конфиг ==========================
|
| 28 |
DEVICE = "cuda"
|
| 29 |
DTYPE = torch.float16
|
| 30 |
+
IMAGE_FOLDER = "/home/recoilme/dataset/alchemist"
|
| 31 |
MIN_SIZE = 1280
|
| 32 |
CROP_SIZE = 512
|
| 33 |
BATCH_SIZE = 10
|
| 34 |
MAX_IMAGES = 0
|
| 35 |
NUM_WORKERS = 4
|
| 36 |
+
SAMPLES_DIR = "vaetest"
|
|
|
|
| 37 |
|
|
|
|
| 38 |
VAE_LIST = [
|
| 39 |
+
# ("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
|
| 40 |
+
("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
|
| 41 |
+
#("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
| 42 |
+
#("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
| 43 |
+
#("SimpleVAE1", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly"),
|
| 44 |
+
#("SimpleVAE2", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly2"),
|
| 45 |
+
#("FLUX.1-schnell VAE", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
|
| 46 |
+
# ("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
| 47 |
+
#("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"),
|
| 48 |
+
#("wan16x_vae_nightly", AutoencoderKLWan, "AiArtLab/simplevae","wan16x_vae_nightly"),
|
| 49 |
+
#("wan16x_vae_nightly2", AutoencoderKLWan, "AiArtLab/simplevae","wan16x_vae_nightly2"),
|
| 50 |
+
#("SimpleVAE ", AutoencoderKL, "AiArtLab/simplevae", None),
|
| 51 |
+
#("AuraDiffusion/16ch-vae", AutoencoderKL, "AuraDiffusion/16ch-vae", None),
|
| 52 |
+
#("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
| 53 |
+
#("SimpleVAE nightly2", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly2"),
|
| 54 |
+
("aiartlab/SDXLVAE", AutoencoderKL, "/home/recoilme/vae", "sdxlvae"),
|
| 55 |
]
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
# ========================== Утилиты ==========================
|
| 59 |
+
def to_neg1_1(x: torch.Tensor) -> torch.Tensor:
|
| 60 |
+
return x * 2 - 1
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
def to_0_1(x: torch.Tensor) -> torch.Tensor:
|
| 64 |
+
return (x + 1) * 0.5
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def safe_psnr(mse: float) -> float:
|
| 68 |
+
if mse <= 1e-12:
|
| 69 |
+
return float("inf")
|
| 70 |
+
return 10.0 * float(np.log10(1.0 / mse))
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
def is_video_like_vae(vae) -> bool:
|
| 74 |
+
# Wan и LTX-Video ждут [B, C, T, H, W]
|
| 75 |
+
return isinstance(vae, (AutoencoderKLWan, AutoencoderKLLTXVideo,AutoencoderKLQwenImage))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def add_time_dim_if_needed(x: torch.Tensor, vae) -> torch.Tensor:
|
| 79 |
+
if is_video_like_vae(vae) and x.ndim == 4:
|
| 80 |
+
return x.unsqueeze(2) # -> [B, C, 1, H, W]
|
| 81 |
+
return x
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def strip_time_dim_if_possible(x: torch.Tensor, vae) -> torch.Tensor:
|
| 85 |
+
if is_video_like_vae(vae) and x.ndim == 5 and x.shape[2] == 1:
|
| 86 |
+
return x.squeeze(2) # -> [B, C, H, W]
|
| 87 |
+
return x
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
@torch.no_grad()
|
| 91 |
+
def sobel_edge_l1(real_0_1: torch.Tensor, fake_0_1: torch.Tensor) -> float:
|
| 92 |
+
real = to_neg1_1(real_0_1)
|
| 93 |
+
fake = to_neg1_1(fake_0_1)
|
| 94 |
+
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
|
| 95 |
+
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
|
| 96 |
+
C = real.shape[1]
|
| 97 |
+
kx = kx.to(real.dtype).repeat(C, 1, 1, 1)
|
| 98 |
+
ky = ky.to(real.dtype).repeat(C, 1, 1, 1)
|
| 99 |
+
|
| 100 |
+
def grad_mag(x):
|
| 101 |
+
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 102 |
+
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 103 |
+
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 104 |
+
|
| 105 |
+
return F.l1_loss(grad_mag(fake), grad_mag(real)).item()
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
def flatten_channels(x: torch.Tensor) -> torch.Tensor:
|
| 109 |
+
# -> [C, N*H*W] или [C, N*T*H*W]
|
| 110 |
+
if x.ndim == 4:
|
| 111 |
+
return x.permute(1, 0, 2, 3).reshape(x.shape[1], -1)
|
| 112 |
+
elif x.ndim == 5:
|
| 113 |
+
return x.permute(1, 0, 2, 3, 4).reshape(x.shape[1], -1)
|
| 114 |
+
else:
|
| 115 |
+
raise ValueError(f"Unexpected tensor ndim={x.ndim}")
|
| 116 |
+
|
| 117 |
+
|
| 118 |
+
def _to_numpy_1d(x: Any) -> Optional[np.ndarray]:
|
| 119 |
+
if x is None:
|
| 120 |
+
return None
|
| 121 |
+
if isinstance(x, (int, float)):
|
| 122 |
+
return None
|
| 123 |
+
if isinstance(x, torch.Tensor):
|
| 124 |
+
x = x.detach().cpu().float().numpy()
|
| 125 |
+
elif isinstance(x, (list, tuple)):
|
| 126 |
+
x = np.array(x, dtype=np.float32)
|
| 127 |
+
elif isinstance(x, np.ndarray):
|
| 128 |
+
x = x.astype(np.float32, copy=False)
|
| 129 |
+
else:
|
| 130 |
+
return None
|
| 131 |
+
x = x.reshape(-1)
|
| 132 |
+
return x
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def _to_float(x: Any) -> Optional[float]:
|
| 136 |
+
if x is None:
|
| 137 |
+
return None
|
| 138 |
+
if isinstance(x, (int, float)):
|
| 139 |
+
return float(x)
|
| 140 |
+
if isinstance(x, np.ndarray) and x.size == 1:
|
| 141 |
+
return float(x.item())
|
| 142 |
+
if isinstance(x, torch.Tensor) and x.numel() == 1:
|
| 143 |
+
return float(x.item())
|
| 144 |
+
return None
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
def get_norm_tensors_and_summary(vae, latent_like: torch.Tensor):
|
| 148 |
"""
|
| 149 |
+
Нормализация латентов: глобальная и поканальная.
|
| 150 |
+
Применение: сначала глобальная (scalar), затем поканальная (vector).
|
| 151 |
+
Если в конфиге есть несколько ключей — аккумулируем.
|
| 152 |
"""
|
| 153 |
+
cfg = getattr(vae, "config", vae)
|
| 154 |
+
|
| 155 |
+
scale_keys = [
|
| 156 |
+
"latents_std"
|
| 157 |
+
]
|
| 158 |
+
shift_keys = [
|
| 159 |
+
"latents_mean"
|
| 160 |
+
]
|
| 161 |
+
|
| 162 |
+
C = latent_like.shape[1]
|
| 163 |
+
nd = latent_like.ndim # 4 или 5
|
| 164 |
+
dev = latent_like.device
|
| 165 |
+
dt = latent_like.dtype
|
| 166 |
+
|
| 167 |
+
scale_global = getattr(vae.config, "scaling_factor", 1.0)
|
| 168 |
+
shift_global = getattr(vae.config, "shift_factor", 0.0)
|
| 169 |
+
if scale_global is None:
|
| 170 |
+
scale_global = 1.0
|
| 171 |
+
if shift_global is None:
|
| 172 |
+
shift_global = 0.0
|
| 173 |
|
| 174 |
+
scale_channel = np.ones(C, dtype=np.float32)
|
| 175 |
+
shift_channel = np.zeros(C, dtype=np.float32)
|
| 176 |
|
| 177 |
+
for k in scale_keys:
|
| 178 |
+
v = getattr(cfg, k, None)
|
| 179 |
+
if v is None:
|
| 180 |
+
continue
|
| 181 |
+
vec = _to_numpy_1d(v)
|
| 182 |
+
if vec is not None and vec.size == C:
|
| 183 |
+
scale_channel *= vec
|
| 184 |
+
else:
|
| 185 |
+
s = _to_float(v)
|
| 186 |
+
if s is not None:
|
| 187 |
+
scale_global *= s
|
| 188 |
+
|
| 189 |
+
for k in shift_keys:
|
| 190 |
+
v = getattr(cfg, k, None)
|
| 191 |
+
if v is None:
|
| 192 |
+
continue
|
| 193 |
+
vec = _to_numpy_1d(v)
|
| 194 |
+
if vec is not None and vec.size == C:
|
| 195 |
+
shift_channel += vec
|
| 196 |
+
else:
|
| 197 |
+
s = _to_float(v)
|
| 198 |
+
if s is not None:
|
| 199 |
+
shift_global += s
|
| 200 |
+
|
| 201 |
+
g_shape = [1] * nd
|
| 202 |
+
c_shape = [1] * nd
|
| 203 |
+
c_shape[1] = C
|
| 204 |
+
|
| 205 |
+
t_scale_g = torch.tensor(scale_global, dtype=dt, device=dev).view(*g_shape)
|
| 206 |
+
t_shift_g = torch.tensor(shift_global, dtype=dt, device=dev).view(*g_shape)
|
| 207 |
+
t_scale_c = torch.from_numpy(scale_channel).to(device=dev, dtype=dt).view(*c_shape)
|
| 208 |
+
t_shift_c = torch.from_numpy(shift_channel).to(device=dev, dtype=dt).view(*c_shape)
|
| 209 |
+
|
| 210 |
+
summary = {
|
| 211 |
+
"scale_global": float(scale_global),
|
| 212 |
+
"shift_global": float(shift_global),
|
| 213 |
+
"scale_channel_min": float(scale_channel.min()),
|
| 214 |
+
"scale_channel_mean": float(scale_channel.mean()),
|
| 215 |
+
"scale_channel_max": float(scale_channel.max()),
|
| 216 |
+
"shift_channel_min": float(shift_channel.min()),
|
| 217 |
+
"shift_channel_mean": float(shift_channel.mean()),
|
| 218 |
+
"shift_channel_max": float(shift_channel.max()),
|
| 219 |
+
}
|
| 220 |
+
return t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
@torch.no_grad()
|
| 224 |
+
def kl_divergence_per_image(mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
|
| 225 |
+
kl_map = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) # [B, ...]
|
| 226 |
+
return kl_map.float().view(kl_map.shape[0], -1).mean(dim=1) # [B]
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def sanitize_filename(name: str) -> str:
|
| 230 |
+
name = name.replace("/", "_").replace("\\", "_").replace(" ", "_")
|
| 231 |
+
return "".join(ch if (ch.isalnum() or ch in "._-") else "_" for ch in name)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
# ========================== Датасет ==========================
|
| 235 |
class ImageFolderDataset(Dataset):
|
| 236 |
+
def __init__(self, root_dir: str, extensions=(".png", ".jpg", ".jpeg", ".webp"), min_size=1024, crop_size=512, limit=None):
|
| 237 |
+
paths = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 238 |
for root, _, files in os.walk(root_dir):
|
| 239 |
for fname in files:
|
| 240 |
if fname.lower().endswith(extensions):
|
| 241 |
+
paths.append(os.path.join(root, fname))
|
|
|
|
| 242 |
if limit:
|
| 243 |
+
paths = paths[:limit]
|
| 244 |
+
|
|
|
|
| 245 |
valid = []
|
| 246 |
+
for p in tqdm(paths, desc="Проверяем файлы"):
|
| 247 |
try:
|
| 248 |
with Image.open(p) as im:
|
| 249 |
im.verify()
|
| 250 |
valid.append(p)
|
| 251 |
+
except Exception:
|
| 252 |
+
pass
|
| 253 |
+
if not valid:
|
| 254 |
+
raise RuntimeError(f"Нет валидных изображений в {root_dir}")
|
| 255 |
+
random.shuffle(valid)
|
| 256 |
self.paths = valid
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
print(f"Найдено {len(self.paths)} изображений")
|
| 258 |
+
|
| 259 |
self.transform = Compose([
|
| 260 |
+
Resize(min_size),
|
| 261 |
CenterCrop(crop_size),
|
| 262 |
+
ToTensor(), # 0..1, float32
|
| 263 |
])
|
| 264 |
+
|
| 265 |
def __len__(self):
|
| 266 |
return len(self.paths)
|
| 267 |
+
|
| 268 |
def __getitem__(self, idx):
|
| 269 |
+
with Image.open(self.paths[idx]) as img:
|
|
|
|
| 270 |
img = img.convert("RGB")
|
| 271 |
return self.transform(img)
|
| 272 |
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
+
# ========================== Основное ==========================
|
| 275 |
+
def main():
|
| 276 |
+
torch.set_grad_enabled(False)
|
| 277 |
+
os.makedirs(SAMPLES_DIR, exist_ok=True)
|
| 278 |
|
| 279 |
+
dataset = ImageFolderDataset(IMAGE_FOLDER, min_size=MIN_SIZE, crop_size=CROP_SIZE, limit=MAX_IMAGES)
|
| 280 |
+
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True)
|
| 281 |
|
| 282 |
+
lpips_net = lpips.LPIPS(net="vgg").to(DEVICE).eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 283 |
|
| 284 |
+
# Загрузка VAE
|
| 285 |
+
vaes: List[Tuple[str, object]] = []
|
| 286 |
+
print("\nЗагрузка VAE...")
|
| 287 |
+
for human_name, vae_class, model_path, subfolder in VAE_LIST:
|
| 288 |
+
try:
|
| 289 |
+
vae = vae_class.from_pretrained(model_path, subfolder=subfolder, torch_dtype=DTYPE)
|
| 290 |
+
vae = vae.to(DEVICE).eval()
|
| 291 |
+
vaes.append((human_name, vae))
|
| 292 |
+
print(f" ✅ {human_name}")
|
| 293 |
+
except Exception as e:
|
| 294 |
+
print(f" ❌ {human_name}: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
+
if not vaes:
|
| 297 |
+
print("Нет успешно загруженных VAE. Выходим.")
|
| 298 |
+
return
|
|
|
|
|
|
|
| 299 |
|
| 300 |
+
# Агрегаторы
|
| 301 |
+
per_model_metrics: Dict[str, Dict[str, float]] = {
|
| 302 |
+
name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "kl": 0.0, "count": 0.0}
|
| 303 |
+
for name, _ in vaes
|
| 304 |
+
}
|
| 305 |
+
|
| 306 |
+
buffers_zmodel: Dict[str, List[torch.Tensor]] = {name: [] for name, _ in vaes}
|
| 307 |
+
norm_summaries: Dict[str, Dict[str, float]] = {}
|
| 308 |
+
|
| 309 |
+
# Флаг для сохранения первой картинки
|
| 310 |
+
saved_first_for: Dict[str, bool] = {name: False for name, _ in vaes}
|
| 311 |
+
|
| 312 |
+
for batch_0_1 in tqdm(loader, desc="Батчи"):
|
| 313 |
+
batch_0_1 = batch_0_1.to(DEVICE, torch.float32)
|
| 314 |
+
batch_neg1_1 = to_neg1_1(batch_0_1).to(DTYPE)
|
| 315 |
+
|
| 316 |
+
for model_name, vae in vaes:
|
| 317 |
+
x_in = add_time_dim_if_needed(batch_neg1_1, vae)
|
| 318 |
+
|
| 319 |
+
posterior = vae.encode(x_in).latent_dist
|
| 320 |
+
mu, logvar = posterior.mean, posterior.logvar
|
| 321 |
+
|
| 322 |
+
# Реконструкция (детерминированно)
|
| 323 |
+
z_raw_mode = posterior.mode()
|
| 324 |
+
x_dec = vae.decode(z_raw_mode).sample # [-1, 1]
|
| 325 |
+
x_dec = strip_time_dim_if_possible(x_dec, vae)
|
| 326 |
+
x_rec_0_1 = to_0_1(x_dec.float()).clamp(0, 1)
|
| 327 |
+
|
| 328 |
+
# Латенты для UNet: global -> channelwise
|
| 329 |
+
z_raw_sample = posterior.sample()
|
| 330 |
+
t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary = get_norm_tensors_and_summary(vae, z_raw_sample)
|
| 331 |
+
|
| 332 |
+
if model_name not in norm_summaries:
|
| 333 |
+
norm_summaries[model_name] = summary
|
| 334 |
+
|
| 335 |
+
z_tmp = (z_raw_sample - t_shift_g) * t_scale_g
|
| 336 |
+
z_model = (z_tmp - t_shift_c) * t_scale_c
|
| 337 |
+
z_model = strip_time_dim_if_possible(z_model, vae)
|
| 338 |
+
|
| 339 |
+
buffers_zmodel[model_name].append(z_model.detach().to("cpu", torch.float32))
|
| 340 |
+
|
| 341 |
+
# Сохранить первую картинку (оригинал и реконструкцию) для каждого VAE
|
| 342 |
+
if not saved_first_for[model_name]:
|
| 343 |
+
safe = sanitize_filename(model_name)
|
| 344 |
+
orig_path = os.path.join(SAMPLES_DIR, f"{safe}_original.png")
|
| 345 |
+
dec_path = os.path.join(SAMPLES_DIR, f"{safe}_decoded.png")
|
| 346 |
+
save_image(batch_0_1[0:1].cpu(), orig_path)
|
| 347 |
+
save_image(x_rec_0_1[0:1].cpu(), dec_path)
|
| 348 |
+
saved_first_for[model_name] = True
|
| 349 |
+
|
| 350 |
+
# Метрики по картинкам
|
| 351 |
+
B = batch_0_1.shape[0]
|
| 352 |
+
for i in range(B):
|
| 353 |
+
gt = batch_0_1[i:i+1]
|
| 354 |
+
rec = x_rec_0_1[i:i+1]
|
| 355 |
+
|
| 356 |
+
mse = F.mse_loss(gt, rec).item()
|
| 357 |
+
psnr = safe_psnr(mse)
|
| 358 |
+
lp = float(lpips_net(gt, rec, normalize=True).mean().item())
|
| 359 |
+
edge = sobel_edge_l1(gt, rec)
|
| 360 |
+
|
| 361 |
+
per_model_metrics[model_name]["mse"] += mse
|
| 362 |
+
per_model_metrics[model_name]["psnr"] += psnr
|
| 363 |
+
per_model_metrics[model_name]["lpips"] += lp
|
| 364 |
+
per_model_metrics[model_name]["edge"] += edge
|
| 365 |
+
|
| 366 |
+
# KL per-image
|
| 367 |
+
kl_pi = kl_divergence_per_image(mu, logvar) # [B]
|
| 368 |
+
per_model_metrics[model_name]["kl"] += float(kl_pi.sum().item())
|
| 369 |
+
per_model_metrics[model_name]["count"] += B
|
| 370 |
+
|
| 371 |
+
# Усреднение метрик
|
| 372 |
+
for name in per_model_metrics:
|
| 373 |
+
c = max(1.0, per_model_metrics[name]["count"])
|
| 374 |
+
for k in ["mse", "psnr", "lpips", "edge", "kl"]:
|
| 375 |
+
per_model_metrics[name][k] /= c
|
| 376 |
+
|
| 377 |
+
# Подсчёт статистик латентов и нормальности
|
| 378 |
+
per_model_latent_stats = {}
|
| 379 |
+
for name, _ in vaes:
|
| 380 |
+
if not buffers_zmodel[name]:
|
| 381 |
+
continue
|
| 382 |
+
Z = torch.cat(buffers_zmodel[name], dim=0) # [N, C, H, W]
|
| 383 |
+
|
| 384 |
+
# Глобальные
|
| 385 |
+
z_min = float(Z.min().item())
|
| 386 |
+
z_mean = float(Z.mean().item())
|
| 387 |
+
z_max = float(Z.max().item())
|
| 388 |
+
z_std = float(Z.std(unbiased=True).item())
|
| 389 |
+
|
| 390 |
+
# Пер-канально: skew/kurtosis
|
| 391 |
+
Z_ch = flatten_channels(Z).numpy() # [C, *]
|
| 392 |
+
C = Z_ch.shape[0]
|
| 393 |
+
sk = np.zeros(C, dtype=np.float64)
|
| 394 |
+
ku = np.zeros(C, dtype=np.float64)
|
| 395 |
+
for c in range(C):
|
| 396 |
+
v = Z_ch[c]
|
| 397 |
+
sk[c] = float(skew(v, bias=False))
|
| 398 |
+
ku[c] = float(kurtosis(v, fisher=True, bias=False))
|
| 399 |
+
|
| 400 |
+
skew_min, skew_mean, skew_max = float(sk.min()), float(sk.mean()), float(sk.max())
|
| 401 |
+
kurt_min, kurt_mean, kurt_max = float(ku.min()), float(ku.mean()), float(ku.max())
|
| 402 |
+
mean_abs_skew = float(np.mean(np.abs(sk)))
|
| 403 |
+
mean_abs_kurt = float(np.mean(np.abs(ku)))
|
| 404 |
+
|
| 405 |
+
per_model_latent_stats[name] = {
|
| 406 |
+
"Z_min": z_min, "Z_mean": z_mean, "Z_max": z_max, "Z_std": z_std,
|
| 407 |
+
"skew_min": skew_min, "skew_mean": skew_mean, "skew_max": skew_max,
|
| 408 |
+
"kurt_min": kurt_min, "kurt_mean": kurt_mean, "kurt_max": kurt_max,
|
| 409 |
+
"mean_abs_skew": mean_abs_skew, "mean_abs_kurt": mean_abs_kurt,
|
| 410 |
+
}
|
| 411 |
+
|
| 412 |
+
# Печать параметров нормализации (shift/scale)
|
| 413 |
+
print("\n=== Параметры нормализации латентов (как применялись) ===")
|
| 414 |
+
for name, _ in vaes:
|
| 415 |
+
if name not in norm_summaries:
|
| 416 |
+
continue
|
| 417 |
+
s = norm_summaries[name]
|
| 418 |
+
print(
|
| 419 |
+
f"{name:26s} | "
|
| 420 |
+
f"shift_g={s['shift_global']:.6g} scale_g={s['scale_global']:.6g} | "
|
| 421 |
+
f"shift_c[min/mean/max]=[{s['shift_channel_min']:.6g}, {s['shift_channel_mean']:.6g}, {s['shift_channel_max']:.6g}] | "
|
| 422 |
+
f"scale_c[min/mean/max]=[{s['scale_channel_min']:.6g}, {s['scale_channel_mean']:.6g}, {s['scale_channel_max']:.6g}]"
|
| 423 |
+
)
|
| 424 |
+
|
| 425 |
+
# Абсолютные метрики
|
| 426 |
+
print("\n=== Абсолютные метрики реконструкции и латентов ===")
|
| 427 |
+
for name, _ in vaes:
|
| 428 |
+
if name not in per_model_latent_stats:
|
| 429 |
+
continue
|
| 430 |
+
m = per_model_metrics[name]
|
| 431 |
+
s = per_model_latent_stats[name]
|
| 432 |
+
print(
|
| 433 |
+
f"{name:26s} | "
|
| 434 |
+
f"MSE={m['mse']:.3e} PSNR={m['psnr']:.2f} LPIPS={m['lpips']:.3f} Edge={m['edge']:.3f} KL={m['kl']:.3f} | "
|
| 435 |
+
f"Z[min/mean/max/std]=[{s['Z_min']:.3f}, {s['Z_mean']:.3f}, {s['Z_max']:.3f}, {s['Z_std']:.3f}] | "
|
| 436 |
+
f"Skew[min/mean/max]=[{s['skew_min']:.3f}, {s['skew_mean']:.3f}, {s['skew_max']:.3f}] | "
|
| 437 |
+
f"Kurt[min/mean/max]=[{s['kurt_min']:.3f}, {s['kurt_mean']:.3f}, {s['kurt_max']:.3f}]"
|
| 438 |
+
)
|
| 439 |
+
|
| 440 |
+
# Сравнение с первой моделью
|
| 441 |
+
baseline = vaes[0][0]
|
| 442 |
+
print("\n=== Сравнение с первой моделью (проценты) ===")
|
| 443 |
+
print(f"| {'Модель':26s} | {'MSE':>9s} | {'PSNR':>9s} | {'LPIPS':>9s} | {'Edge':>9s} | {'Skew|0':>9s} | {'Kurt|0':>9s} |")
|
| 444 |
+
print(f"|{'-'*28}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|")
|
| 445 |
+
|
| 446 |
+
b_m = per_model_metrics[baseline]
|
| 447 |
+
b_s = per_model_latent_stats[baseline]
|
| 448 |
+
|
| 449 |
+
for name, _ in vaes:
|
| 450 |
+
m = per_model_metrics[name]
|
| 451 |
+
s = per_model_latent_stats[name]
|
| 452 |
+
|
| 453 |
+
mse_pct = (b_m["mse"] / max(1e-12, m["mse"])) * 100.0 # меньше лучше
|
| 454 |
+
psnr_pct = (m["psnr"] / max(1e-12, b_m["psnr"])) * 100.0 # больше лучше
|
| 455 |
+
lpips_pct= (b_m["lpips"] / max(1e-12, m["lpips"])) * 100.0 # меньше лучше
|
| 456 |
+
edge_pct = (b_m["edge"] / max(1e-12, m["edge"])) * 100.0 # меньше лучше
|
| 457 |
+
|
| 458 |
+
skew0_pct = (b_s["mean_abs_skew"] / max(1e-12, s["mean_abs_skew"])) * 100.0
|
| 459 |
+
kurt0_pct = (b_s["mean_abs_kurt"] / max(1e-12, s["mean_abs_kurt"])) * 100.0
|
| 460 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
if name == baseline:
|
| 462 |
+
print(f"| {name:26s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} |")
|
| 463 |
else:
|
| 464 |
+
print(f"| {name:26s} | {mse_pct:8.1f}% | {psnr_pct:8.1f}% | {lpips_pct:8.1f}% | {edge_pct:8.1f}% | {skew0_pct:8.1f}% | {kurt0_pct:8.1f}% |")
|
| 465 |
+
|
| 466 |
+
# ========================== Коррекции для последнего VAE + сохранение в JSON ==========================
|
| 467 |
+
last_name = vaes[-1][0]
|
| 468 |
+
if buffers_zmodel[last_name]:
|
| 469 |
+
Z = torch.cat(buffers_zmodel[last_name], dim=0) # [N, C, H, W]
|
| 470 |
+
|
| 471 |
+
# Глобальная коррекция (по всем каналам/пикселям)
|
| 472 |
+
z_mean = float(Z.mean().item())
|
| 473 |
+
z_std = float(Z.std(unbiased=True).item())
|
| 474 |
+
correction_global = {
|
| 475 |
+
"shift": -z_mean,
|
| 476 |
+
"scale": (1.0 / z_std) if z_std > 1e-12 else 1.0
|
| 477 |
+
}
|
| 478 |
+
|
| 479 |
+
# Поканальная коррекция
|
| 480 |
+
Z_ch = flatten_channels(Z) # [C, M]
|
| 481 |
+
ch_means_t = Z_ch.mean(dim=1) # [C]
|
| 482 |
+
ch_stds_t = Z_ch.std(dim=1, unbiased=True) + 1e-12 # [C]
|
| 483 |
+
ch_means = [float(x) for x in ch_means_t.tolist()]
|
| 484 |
+
ch_stds = [float(x) for x in ch_stds_t.tolist()]
|
| 485 |
+
|
| 486 |
+
correction_per_channel = [
|
| 487 |
+
{"shift": float(-m), "scale": float(1.0 / s)}
|
| 488 |
+
for m, s in zip(ch_means, ch_stds)
|
| 489 |
+
]
|
| 490 |
+
|
| 491 |
+
print(f"\n=== Доп. коррекция для {last_name} (поверх VAE-нормализации) ===")
|
| 492 |
+
print(f"global_correction = {correction_global}")
|
| 493 |
+
print(f"channelwise_means = {ch_means}")
|
| 494 |
+
print(f"channelwise_stds = {ch_stds}")
|
| 495 |
+
print(f"channelwise_correction = {correction_per_channel}")
|
| 496 |
+
|
| 497 |
+
# Сохранение в JSON
|
| 498 |
+
json_path = os.path.join(SAMPLES_DIR, f"{sanitize_filename(last_name)}_correction.json")
|
| 499 |
+
to_save = {
|
| 500 |
+
"model_name": last_name,
|
| 501 |
+
"vae_normalization_summary": norm_summaries.get(last_name, {}),
|
| 502 |
+
"global_correction": correction_global,
|
| 503 |
+
"per_channel_means": ch_means,
|
| 504 |
+
"per_channel_stds": ch_stds,
|
| 505 |
+
"per_channel_correction": correction_per_channel,
|
| 506 |
+
"apply_order": {
|
| 507 |
+
"forward": "z_model -> (z - global_shift)*global_scale -> (per-channel: (z - mean_c)/std_c)",
|
| 508 |
+
"inverse": "z_corr -> (per-channel: z*std_c + mean_c) -> (z/global_scale + global_shift)"
|
| 509 |
+
},
|
| 510 |
+
"note": "Эти коэффициенты рассчитаны по z_model (после встроенных VAE shift/scale), чтобы привести распределение к N(0,1)."
|
| 511 |
+
}
|
| 512 |
+
with open(json_path, "w", encoding="utf-8") as f:
|
| 513 |
+
json.dump(to_save, f, ensure_ascii=False, indent=2)
|
| 514 |
+
print("Corrections JSON saved to:", os.path.abspath(json_path))
|
| 515 |
+
|
| 516 |
+
print("\n✅ Готово. Сэмплы сохранены в:", os.path.abspath(SAMPLES_DIR))
|
| 517 |
+
|
| 518 |
+
|
| 519 |
+
if __name__ == "__main__":
|
| 520 |
+
main()
|
eval_alchemist2.py
DELETED
|
@@ -1,516 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import json
|
| 3 |
-
import random
|
| 4 |
-
from typing import Dict, List, Tuple, Optional, Any
|
| 5 |
-
|
| 6 |
-
import numpy as np
|
| 7 |
-
from PIL import Image
|
| 8 |
-
from tqdm import tqdm
|
| 9 |
-
|
| 10 |
-
import torch
|
| 11 |
-
import torch.nn.functional as F
|
| 12 |
-
from torch.utils.data import Dataset, DataLoader
|
| 13 |
-
from torchvision.transforms import Compose, Resize, ToTensor, CenterCrop
|
| 14 |
-
from torchvision.utils import save_image
|
| 15 |
-
import lpips
|
| 16 |
-
|
| 17 |
-
from diffusers import (
|
| 18 |
-
AutoencoderKL,
|
| 19 |
-
AutoencoderKLWan,
|
| 20 |
-
AutoencoderKLLTXVideo,
|
| 21 |
-
AutoencoderKLQwenImage
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
from scipy.stats import skew, kurtosis
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
# ========================== Конфиг ==========================
|
| 28 |
-
DEVICE = "cuda"
|
| 29 |
-
DTYPE = torch.float16
|
| 30 |
-
IMAGE_FOLDER = "/workspace/alchemist"
|
| 31 |
-
MIN_SIZE = 1280
|
| 32 |
-
CROP_SIZE = 512
|
| 33 |
-
BATCH_SIZE = 10
|
| 34 |
-
MAX_IMAGES = 0
|
| 35 |
-
NUM_WORKERS = 4
|
| 36 |
-
SAMPLES_DIR = "vaetest"
|
| 37 |
-
|
| 38 |
-
VAE_LIST = [
|
| 39 |
-
# ("SD15 VAE", AutoencoderKL, "stable-diffusion-v1-5/stable-diffusion-v1-5", "vae"),
|
| 40 |
-
# ("SDXL VAE fp16 fix", AutoencoderKL, "madebyollin/sdxl-vae-fp16-fix", None),
|
| 41 |
-
#("Wan2.2-TI2V-5B", AutoencoderKLWan, "Wan-AI/Wan2.2-TI2V-5B-Diffusers", "vae"),
|
| 42 |
-
#("Wan2.2-T2V-A14B", AutoencoderKLWan, "Wan-AI/Wan2.2-T2V-A14B-Diffusers", "vae"),
|
| 43 |
-
#("SimpleVAE1", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly"),
|
| 44 |
-
#("SimpleVAE2", AutoencoderKL, "/home/recoilme/simplevae/simplevae", "simple_vae_nightly2"),
|
| 45 |
-
#("SimpleVAE ", AutoencoderKL, "AiArtLab/simplevae", None),
|
| 46 |
-
#("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
| 47 |
-
("FLUX.1-schnell VAE", AutoencoderKL, "black-forest-labs/FLUX.1-schnell", "vae"),
|
| 48 |
-
("SimpleVAE nightly", AutoencoderKL, "AiArtLab/simplevae", "simple_vae_nightly"),
|
| 49 |
-
# ("LTX-Video VAE", AutoencoderKLLTXVideo, "Lightricks/LTX-Video", "vae"),
|
| 50 |
-
#("QwenImage", AutoencoderKLQwenImage, "Qwen/Qwen-Image", "vae"),
|
| 51 |
-
]
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
# ========================== Утилиты ==========================
|
| 55 |
-
def to_neg1_1(x: torch.Tensor) -> torch.Tensor:
|
| 56 |
-
return x * 2 - 1
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
def to_0_1(x: torch.Tensor) -> torch.Tensor:
|
| 60 |
-
return (x + 1) * 0.5
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
def safe_psnr(mse: float) -> float:
|
| 64 |
-
if mse <= 1e-12:
|
| 65 |
-
return float("inf")
|
| 66 |
-
return 10.0 * float(np.log10(1.0 / mse))
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
def is_video_like_vae(vae) -> bool:
|
| 70 |
-
# Wan и LTX-Video ждут [B, C, T, H, W]
|
| 71 |
-
return isinstance(vae, (AutoencoderKLWan, AutoencoderKLLTXVideo,AutoencoderKLQwenImage))
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
def add_time_dim_if_needed(x: torch.Tensor, vae) -> torch.Tensor:
|
| 75 |
-
if is_video_like_vae(vae) and x.ndim == 4:
|
| 76 |
-
return x.unsqueeze(2) # -> [B, C, 1, H, W]
|
| 77 |
-
return x
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
def strip_time_dim_if_possible(x: torch.Tensor, vae) -> torch.Tensor:
|
| 81 |
-
if is_video_like_vae(vae) and x.ndim == 5 and x.shape[2] == 1:
|
| 82 |
-
return x.squeeze(2) # -> [B, C, H, W]
|
| 83 |
-
return x
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
@torch.no_grad()
|
| 87 |
-
def sobel_edge_l1(real_0_1: torch.Tensor, fake_0_1: torch.Tensor) -> float:
|
| 88 |
-
real = to_neg1_1(real_0_1)
|
| 89 |
-
fake = to_neg1_1(fake_0_1)
|
| 90 |
-
kx = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
|
| 91 |
-
ky = torch.tensor([[-1, -2, -1], [0, 0, 0], [1, 2, 1]], dtype=torch.float32, device=real.device).view(1, 1, 3, 3)
|
| 92 |
-
C = real.shape[1]
|
| 93 |
-
kx = kx.to(real.dtype).repeat(C, 1, 1, 1)
|
| 94 |
-
ky = ky.to(real.dtype).repeat(C, 1, 1, 1)
|
| 95 |
-
|
| 96 |
-
def grad_mag(x):
|
| 97 |
-
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 98 |
-
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 99 |
-
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 100 |
-
|
| 101 |
-
return F.l1_loss(grad_mag(fake), grad_mag(real)).item()
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
def flatten_channels(x: torch.Tensor) -> torch.Tensor:
|
| 105 |
-
# -> [C, N*H*W] или [C, N*T*H*W]
|
| 106 |
-
if x.ndim == 4:
|
| 107 |
-
return x.permute(1, 0, 2, 3).reshape(x.shape[1], -1)
|
| 108 |
-
elif x.ndim == 5:
|
| 109 |
-
return x.permute(1, 0, 2, 3, 4).reshape(x.shape[1], -1)
|
| 110 |
-
else:
|
| 111 |
-
raise ValueError(f"Unexpected tensor ndim={x.ndim}")
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
def _to_numpy_1d(x: Any) -> Optional[np.ndarray]:
|
| 115 |
-
if x is None:
|
| 116 |
-
return None
|
| 117 |
-
if isinstance(x, (int, float)):
|
| 118 |
-
return None
|
| 119 |
-
if isinstance(x, torch.Tensor):
|
| 120 |
-
x = x.detach().cpu().float().numpy()
|
| 121 |
-
elif isinstance(x, (list, tuple)):
|
| 122 |
-
x = np.array(x, dtype=np.float32)
|
| 123 |
-
elif isinstance(x, np.ndarray):
|
| 124 |
-
x = x.astype(np.float32, copy=False)
|
| 125 |
-
else:
|
| 126 |
-
return None
|
| 127 |
-
x = x.reshape(-1)
|
| 128 |
-
return x
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
def _to_float(x: Any) -> Optional[float]:
|
| 132 |
-
if x is None:
|
| 133 |
-
return None
|
| 134 |
-
if isinstance(x, (int, float)):
|
| 135 |
-
return float(x)
|
| 136 |
-
if isinstance(x, np.ndarray) and x.size == 1:
|
| 137 |
-
return float(x.item())
|
| 138 |
-
if isinstance(x, torch.Tensor) and x.numel() == 1:
|
| 139 |
-
return float(x.item())
|
| 140 |
-
return None
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
def get_norm_tensors_and_summary(vae, latent_like: torch.Tensor):
|
| 144 |
-
"""
|
| 145 |
-
Нормализация латентов: глобальная и поканальная.
|
| 146 |
-
Применение: сначала глобальная (scalar), затем поканальная (vector).
|
| 147 |
-
Если в конфиге есть несколько ключей — аккумулируем.
|
| 148 |
-
"""
|
| 149 |
-
cfg = getattr(vae, "config", vae)
|
| 150 |
-
|
| 151 |
-
scale_keys = [
|
| 152 |
-
"latents_std"
|
| 153 |
-
]
|
| 154 |
-
shift_keys = [
|
| 155 |
-
"latents_mean"
|
| 156 |
-
]
|
| 157 |
-
|
| 158 |
-
C = latent_like.shape[1]
|
| 159 |
-
nd = latent_like.ndim # 4 или 5
|
| 160 |
-
dev = latent_like.device
|
| 161 |
-
dt = latent_like.dtype
|
| 162 |
-
|
| 163 |
-
scale_global = getattr(vae.config, "scaling_factor", 1.0)
|
| 164 |
-
shift_global = getattr(vae.config, "shift_factor", 0.0)
|
| 165 |
-
if scale_global is None:
|
| 166 |
-
scale_global = 1.0
|
| 167 |
-
if shift_global is None:
|
| 168 |
-
shift_global = 0.0
|
| 169 |
-
|
| 170 |
-
scale_channel = np.ones(C, dtype=np.float32)
|
| 171 |
-
shift_channel = np.zeros(C, dtype=np.float32)
|
| 172 |
-
|
| 173 |
-
for k in scale_keys:
|
| 174 |
-
v = getattr(cfg, k, None)
|
| 175 |
-
if v is None:
|
| 176 |
-
continue
|
| 177 |
-
vec = _to_numpy_1d(v)
|
| 178 |
-
if vec is not None and vec.size == C:
|
| 179 |
-
scale_channel *= vec
|
| 180 |
-
else:
|
| 181 |
-
s = _to_float(v)
|
| 182 |
-
if s is not None:
|
| 183 |
-
scale_global *= s
|
| 184 |
-
|
| 185 |
-
for k in shift_keys:
|
| 186 |
-
v = getattr(cfg, k, None)
|
| 187 |
-
if v is None:
|
| 188 |
-
continue
|
| 189 |
-
vec = _to_numpy_1d(v)
|
| 190 |
-
if vec is not None and vec.size == C:
|
| 191 |
-
shift_channel += vec
|
| 192 |
-
else:
|
| 193 |
-
s = _to_float(v)
|
| 194 |
-
if s is not None:
|
| 195 |
-
shift_global += s
|
| 196 |
-
|
| 197 |
-
g_shape = [1] * nd
|
| 198 |
-
c_shape = [1] * nd
|
| 199 |
-
c_shape[1] = C
|
| 200 |
-
|
| 201 |
-
t_scale_g = torch.tensor(scale_global, dtype=dt, device=dev).view(*g_shape)
|
| 202 |
-
t_shift_g = torch.tensor(shift_global, dtype=dt, device=dev).view(*g_shape)
|
| 203 |
-
t_scale_c = torch.from_numpy(scale_channel).to(device=dev, dtype=dt).view(*c_shape)
|
| 204 |
-
t_shift_c = torch.from_numpy(shift_channel).to(device=dev, dtype=dt).view(*c_shape)
|
| 205 |
-
|
| 206 |
-
summary = {
|
| 207 |
-
"scale_global": float(scale_global),
|
| 208 |
-
"shift_global": float(shift_global),
|
| 209 |
-
"scale_channel_min": float(scale_channel.min()),
|
| 210 |
-
"scale_channel_mean": float(scale_channel.mean()),
|
| 211 |
-
"scale_channel_max": float(scale_channel.max()),
|
| 212 |
-
"shift_channel_min": float(shift_channel.min()),
|
| 213 |
-
"shift_channel_mean": float(shift_channel.mean()),
|
| 214 |
-
"shift_channel_max": float(shift_channel.max()),
|
| 215 |
-
}
|
| 216 |
-
return t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
@torch.no_grad()
|
| 220 |
-
def kl_divergence_per_image(mu: torch.Tensor, logvar: torch.Tensor) -> torch.Tensor:
|
| 221 |
-
kl_map = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()) # [B, ...]
|
| 222 |
-
return kl_map.float().view(kl_map.shape[0], -1).mean(dim=1) # [B]
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
def sanitize_filename(name: str) -> str:
|
| 226 |
-
name = name.replace("/", "_").replace("\\", "_").replace(" ", "_")
|
| 227 |
-
return "".join(ch if (ch.isalnum() or ch in "._-") else "_" for ch in name)
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
# ========================== Датасет ==========================
|
| 231 |
-
class ImageFolderDataset(Dataset):
|
| 232 |
-
def __init__(self, root_dir: str, extensions=(".png", ".jpg", ".jpeg", ".webp"), min_size=1024, crop_size=512, limit=None):
|
| 233 |
-
paths = []
|
| 234 |
-
for root, _, files in os.walk(root_dir):
|
| 235 |
-
for fname in files:
|
| 236 |
-
if fname.lower().endswith(extensions):
|
| 237 |
-
paths.append(os.path.join(root, fname))
|
| 238 |
-
if limit:
|
| 239 |
-
paths = paths[:limit]
|
| 240 |
-
|
| 241 |
-
valid = []
|
| 242 |
-
for p in tqdm(paths, desc="Проверяем файлы"):
|
| 243 |
-
try:
|
| 244 |
-
with Image.open(p) as im:
|
| 245 |
-
im.verify()
|
| 246 |
-
valid.append(p)
|
| 247 |
-
except Exception:
|
| 248 |
-
pass
|
| 249 |
-
if not valid:
|
| 250 |
-
raise RuntimeError(f"Нет валидных изображений в {root_dir}")
|
| 251 |
-
random.shuffle(valid)
|
| 252 |
-
self.paths = valid
|
| 253 |
-
print(f"Найдено {len(self.paths)} изображений")
|
| 254 |
-
|
| 255 |
-
self.transform = Compose([
|
| 256 |
-
Resize(min_size),
|
| 257 |
-
CenterCrop(crop_size),
|
| 258 |
-
ToTensor(), # 0..1, float32
|
| 259 |
-
])
|
| 260 |
-
|
| 261 |
-
def __len__(self):
|
| 262 |
-
return len(self.paths)
|
| 263 |
-
|
| 264 |
-
def __getitem__(self, idx):
|
| 265 |
-
with Image.open(self.paths[idx]) as img:
|
| 266 |
-
img = img.convert("RGB")
|
| 267 |
-
return self.transform(img)
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
# ========================== Основное ==========================
|
| 271 |
-
def main():
|
| 272 |
-
torch.set_grad_enabled(False)
|
| 273 |
-
os.makedirs(SAMPLES_DIR, exist_ok=True)
|
| 274 |
-
|
| 275 |
-
dataset = ImageFolderDataset(IMAGE_FOLDER, min_size=MIN_SIZE, crop_size=CROP_SIZE, limit=MAX_IMAGES)
|
| 276 |
-
loader = DataLoader(dataset, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS, pin_memory=True)
|
| 277 |
-
|
| 278 |
-
lpips_net = lpips.LPIPS(net="vgg").to(DEVICE).eval()
|
| 279 |
-
|
| 280 |
-
# Загрузка VAE
|
| 281 |
-
vaes: List[Tuple[str, object]] = []
|
| 282 |
-
print("\nЗагрузка VAE...")
|
| 283 |
-
for human_name, vae_class, model_path, subfolder in VAE_LIST:
|
| 284 |
-
try:
|
| 285 |
-
vae = vae_class.from_pretrained(model_path, subfolder=subfolder, torch_dtype=DTYPE)
|
| 286 |
-
vae = vae.to(DEVICE).eval()
|
| 287 |
-
vaes.append((human_name, vae))
|
| 288 |
-
print(f" ✅ {human_name}")
|
| 289 |
-
except Exception as e:
|
| 290 |
-
print(f" ❌ {human_name}: {e}")
|
| 291 |
-
|
| 292 |
-
if not vaes:
|
| 293 |
-
print("Нет успешно загруженных VAE. Выходим.")
|
| 294 |
-
return
|
| 295 |
-
|
| 296 |
-
# Агрегаторы
|
| 297 |
-
per_model_metrics: Dict[str, Dict[str, float]] = {
|
| 298 |
-
name: {"mse": 0.0, "psnr": 0.0, "lpips": 0.0, "edge": 0.0, "kl": 0.0, "count": 0.0}
|
| 299 |
-
for name, _ in vaes
|
| 300 |
-
}
|
| 301 |
-
|
| 302 |
-
buffers_zmodel: Dict[str, List[torch.Tensor]] = {name: [] for name, _ in vaes}
|
| 303 |
-
norm_summaries: Dict[str, Dict[str, float]] = {}
|
| 304 |
-
|
| 305 |
-
# Флаг для сохранения первой картинки
|
| 306 |
-
saved_first_for: Dict[str, bool] = {name: False for name, _ in vaes}
|
| 307 |
-
|
| 308 |
-
for batch_0_1 in tqdm(loader, desc="Батчи"):
|
| 309 |
-
batch_0_1 = batch_0_1.to(DEVICE, torch.float32)
|
| 310 |
-
batch_neg1_1 = to_neg1_1(batch_0_1).to(DTYPE)
|
| 311 |
-
|
| 312 |
-
for model_name, vae in vaes:
|
| 313 |
-
x_in = add_time_dim_if_needed(batch_neg1_1, vae)
|
| 314 |
-
|
| 315 |
-
posterior = vae.encode(x_in).latent_dist
|
| 316 |
-
mu, logvar = posterior.mean, posterior.logvar
|
| 317 |
-
|
| 318 |
-
# Реконструкция (детерминированно)
|
| 319 |
-
z_raw_mode = posterior.mode()
|
| 320 |
-
x_dec = vae.decode(z_raw_mode).sample # [-1, 1]
|
| 321 |
-
x_dec = strip_time_dim_if_possible(x_dec, vae)
|
| 322 |
-
x_rec_0_1 = to_0_1(x_dec.float()).clamp(0, 1)
|
| 323 |
-
|
| 324 |
-
# Латенты для UNet: global -> channelwise
|
| 325 |
-
z_raw_sample = posterior.sample()
|
| 326 |
-
t_shift_g, t_scale_g, t_shift_c, t_scale_c, summary = get_norm_tensors_and_summary(vae, z_raw_sample)
|
| 327 |
-
|
| 328 |
-
if model_name not in norm_summaries:
|
| 329 |
-
norm_summaries[model_name] = summary
|
| 330 |
-
|
| 331 |
-
z_tmp = (z_raw_sample - t_shift_g) * t_scale_g
|
| 332 |
-
z_model = (z_tmp - t_shift_c) * t_scale_c
|
| 333 |
-
z_model = strip_time_dim_if_possible(z_model, vae)
|
| 334 |
-
|
| 335 |
-
buffers_zmodel[model_name].append(z_model.detach().to("cpu", torch.float32))
|
| 336 |
-
|
| 337 |
-
# Сохранить первую картинку (оригинал и реконструкцию) для каждого VAE
|
| 338 |
-
if not saved_first_for[model_name]:
|
| 339 |
-
safe = sanitize_filename(model_name)
|
| 340 |
-
orig_path = os.path.join(SAMPLES_DIR, f"{safe}_original.png")
|
| 341 |
-
dec_path = os.path.join(SAMPLES_DIR, f"{safe}_decoded.png")
|
| 342 |
-
save_image(batch_0_1[0:1].cpu(), orig_path)
|
| 343 |
-
save_image(x_rec_0_1[0:1].cpu(), dec_path)
|
| 344 |
-
saved_first_for[model_name] = True
|
| 345 |
-
|
| 346 |
-
# Метрики по картинкам
|
| 347 |
-
B = batch_0_1.shape[0]
|
| 348 |
-
for i in range(B):
|
| 349 |
-
gt = batch_0_1[i:i+1]
|
| 350 |
-
rec = x_rec_0_1[i:i+1]
|
| 351 |
-
|
| 352 |
-
mse = F.mse_loss(gt, rec).item()
|
| 353 |
-
psnr = safe_psnr(mse)
|
| 354 |
-
lp = float(lpips_net(gt, rec, normalize=True).mean().item())
|
| 355 |
-
edge = sobel_edge_l1(gt, rec)
|
| 356 |
-
|
| 357 |
-
per_model_metrics[model_name]["mse"] += mse
|
| 358 |
-
per_model_metrics[model_name]["psnr"] += psnr
|
| 359 |
-
per_model_metrics[model_name]["lpips"] += lp
|
| 360 |
-
per_model_metrics[model_name]["edge"] += edge
|
| 361 |
-
|
| 362 |
-
# KL per-image
|
| 363 |
-
kl_pi = kl_divergence_per_image(mu, logvar) # [B]
|
| 364 |
-
per_model_metrics[model_name]["kl"] += float(kl_pi.sum().item())
|
| 365 |
-
per_model_metrics[model_name]["count"] += B
|
| 366 |
-
|
| 367 |
-
# Усреднение метрик
|
| 368 |
-
for name in per_model_metrics:
|
| 369 |
-
c = max(1.0, per_model_metrics[name]["count"])
|
| 370 |
-
for k in ["mse", "psnr", "lpips", "edge", "kl"]:
|
| 371 |
-
per_model_metrics[name][k] /= c
|
| 372 |
-
|
| 373 |
-
# Подсчёт статистик латентов и нормальности
|
| 374 |
-
per_model_latent_stats = {}
|
| 375 |
-
for name, _ in vaes:
|
| 376 |
-
if not buffers_zmodel[name]:
|
| 377 |
-
continue
|
| 378 |
-
Z = torch.cat(buffers_zmodel[name], dim=0) # [N, C, H, W]
|
| 379 |
-
|
| 380 |
-
# Глобальные
|
| 381 |
-
z_min = float(Z.min().item())
|
| 382 |
-
z_mean = float(Z.mean().item())
|
| 383 |
-
z_max = float(Z.max().item())
|
| 384 |
-
z_std = float(Z.std(unbiased=True).item())
|
| 385 |
-
|
| 386 |
-
# Пер-канально: skew/kurtosis
|
| 387 |
-
Z_ch = flatten_channels(Z).numpy() # [C, *]
|
| 388 |
-
C = Z_ch.shape[0]
|
| 389 |
-
sk = np.zeros(C, dtype=np.float64)
|
| 390 |
-
ku = np.zeros(C, dtype=np.float64)
|
| 391 |
-
for c in range(C):
|
| 392 |
-
v = Z_ch[c]
|
| 393 |
-
sk[c] = float(skew(v, bias=False))
|
| 394 |
-
ku[c] = float(kurtosis(v, fisher=True, bias=False))
|
| 395 |
-
|
| 396 |
-
skew_min, skew_mean, skew_max = float(sk.min()), float(sk.mean()), float(sk.max())
|
| 397 |
-
kurt_min, kurt_mean, kurt_max = float(ku.min()), float(ku.mean()), float(ku.max())
|
| 398 |
-
mean_abs_skew = float(np.mean(np.abs(sk)))
|
| 399 |
-
mean_abs_kurt = float(np.mean(np.abs(ku)))
|
| 400 |
-
|
| 401 |
-
per_model_latent_stats[name] = {
|
| 402 |
-
"Z_min": z_min, "Z_mean": z_mean, "Z_max": z_max, "Z_std": z_std,
|
| 403 |
-
"skew_min": skew_min, "skew_mean": skew_mean, "skew_max": skew_max,
|
| 404 |
-
"kurt_min": kurt_min, "kurt_mean": kurt_mean, "kurt_max": kurt_max,
|
| 405 |
-
"mean_abs_skew": mean_abs_skew, "mean_abs_kurt": mean_abs_kurt,
|
| 406 |
-
}
|
| 407 |
-
|
| 408 |
-
# Печать параметров нормализации (shift/scale)
|
| 409 |
-
print("\n=== Параметры нормализации латентов (как применялись) ===")
|
| 410 |
-
for name, _ in vaes:
|
| 411 |
-
if name not in norm_summaries:
|
| 412 |
-
continue
|
| 413 |
-
s = norm_summaries[name]
|
| 414 |
-
print(
|
| 415 |
-
f"{name:26s} | "
|
| 416 |
-
f"shift_g={s['shift_global']:.6g} scale_g={s['scale_global']:.6g} | "
|
| 417 |
-
f"shift_c[min/mean/max]=[{s['shift_channel_min']:.6g}, {s['shift_channel_mean']:.6g}, {s['shift_channel_max']:.6g}] | "
|
| 418 |
-
f"scale_c[min/mean/max]=[{s['scale_channel_min']:.6g}, {s['scale_channel_mean']:.6g}, {s['scale_channel_max']:.6g}]"
|
| 419 |
-
)
|
| 420 |
-
|
| 421 |
-
# Абсолютные метрики
|
| 422 |
-
print("\n=== Абсолютные метрики реконструкции и латентов ===")
|
| 423 |
-
for name, _ in vaes:
|
| 424 |
-
if name not in per_model_latent_stats:
|
| 425 |
-
continue
|
| 426 |
-
m = per_model_metrics[name]
|
| 427 |
-
s = per_model_latent_stats[name]
|
| 428 |
-
print(
|
| 429 |
-
f"{name:26s} | "
|
| 430 |
-
f"MSE={m['mse']:.3e} PSNR={m['psnr']:.2f} LPIPS={m['lpips']:.3f} Edge={m['edge']:.3f} KL={m['kl']:.3f} | "
|
| 431 |
-
f"Z[min/mean/max/std]=[{s['Z_min']:.3f}, {s['Z_mean']:.3f}, {s['Z_max']:.3f}, {s['Z_std']:.3f}] | "
|
| 432 |
-
f"Skew[min/mean/max]=[{s['skew_min']:.3f}, {s['skew_mean']:.3f}, {s['skew_max']:.3f}] | "
|
| 433 |
-
f"Kurt[min/mean/max]=[{s['kurt_min']:.3f}, {s['kurt_mean']:.3f}, {s['kurt_max']:.3f}]"
|
| 434 |
-
)
|
| 435 |
-
|
| 436 |
-
# Сравнение с первой моделью
|
| 437 |
-
baseline = vaes[0][0]
|
| 438 |
-
print("\n=== Сравнение с первой моделью (проценты) ===")
|
| 439 |
-
print(f"| {'Модель':26s} | {'MSE':>9s} | {'PSNR':>9s} | {'LPIPS':>9s} | {'Edge':>9s} | {'Skew|0':>9s} | {'Kurt|0':>9s} |")
|
| 440 |
-
print(f"|{'-'*28}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|{'-'*11}|")
|
| 441 |
-
|
| 442 |
-
b_m = per_model_metrics[baseline]
|
| 443 |
-
b_s = per_model_latent_stats[baseline]
|
| 444 |
-
|
| 445 |
-
for name, _ in vaes:
|
| 446 |
-
m = per_model_metrics[name]
|
| 447 |
-
s = per_model_latent_stats[name]
|
| 448 |
-
|
| 449 |
-
mse_pct = (b_m["mse"] / max(1e-12, m["mse"])) * 100.0 # меньше лучше
|
| 450 |
-
psnr_pct = (m["psnr"] / max(1e-12, b_m["psnr"])) * 100.0 # больше лучше
|
| 451 |
-
lpips_pct= (b_m["lpips"] / max(1e-12, m["lpips"])) * 100.0 # меньше лучше
|
| 452 |
-
edge_pct = (b_m["edge"] / max(1e-12, m["edge"])) * 100.0 # меньше лучше
|
| 453 |
-
|
| 454 |
-
skew0_pct = (b_s["mean_abs_skew"] / max(1e-12, s["mean_abs_skew"])) * 100.0
|
| 455 |
-
kurt0_pct = (b_s["mean_abs_kurt"] / max(1e-12, s["mean_abs_kurt"])) * 100.0
|
| 456 |
-
|
| 457 |
-
if name == baseline:
|
| 458 |
-
print(f"| {name:26s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} | {'100%':>9s} |")
|
| 459 |
-
else:
|
| 460 |
-
print(f"| {name:26s} | {mse_pct:8.1f}% | {psnr_pct:8.1f}% | {lpips_pct:8.1f}% | {edge_pct:8.1f}% | {skew0_pct:8.1f}% | {kurt0_pct:8.1f}% |")
|
| 461 |
-
|
| 462 |
-
# ========================== Коррекции для последнего VAE + сохранение в JSON ==========================
|
| 463 |
-
last_name = vaes[-1][0]
|
| 464 |
-
if buffers_zmodel[last_name]:
|
| 465 |
-
Z = torch.cat(buffers_zmodel[last_name], dim=0) # [N, C, H, W]
|
| 466 |
-
|
| 467 |
-
# Глобальная коррекция (по всем каналам/пикселям)
|
| 468 |
-
z_mean = float(Z.mean().item())
|
| 469 |
-
z_std = float(Z.std(unbiased=True).item())
|
| 470 |
-
correction_global = {
|
| 471 |
-
"shift": -z_mean,
|
| 472 |
-
"scale": (1.0 / z_std) if z_std > 1e-12 else 1.0
|
| 473 |
-
}
|
| 474 |
-
|
| 475 |
-
# Поканальная коррекция
|
| 476 |
-
Z_ch = flatten_channels(Z) # [C, M]
|
| 477 |
-
ch_means_t = Z_ch.mean(dim=1) # [C]
|
| 478 |
-
ch_stds_t = Z_ch.std(dim=1, unbiased=True) + 1e-12 # [C]
|
| 479 |
-
ch_means = [float(x) for x in ch_means_t.tolist()]
|
| 480 |
-
ch_stds = [float(x) for x in ch_stds_t.tolist()]
|
| 481 |
-
|
| 482 |
-
correction_per_channel = [
|
| 483 |
-
{"shift": float(-m), "scale": float(1.0 / s)}
|
| 484 |
-
for m, s in zip(ch_means, ch_stds)
|
| 485 |
-
]
|
| 486 |
-
|
| 487 |
-
print(f"\n=== Доп. коррекция для {last_name} (поверх VAE-нормализации) ===")
|
| 488 |
-
print(f"global_correction = {correction_global}")
|
| 489 |
-
print(f"channelwise_means = {ch_means}")
|
| 490 |
-
print(f"channelwise_stds = {ch_stds}")
|
| 491 |
-
print(f"channelwise_correction = {correction_per_channel}")
|
| 492 |
-
|
| 493 |
-
# Сохранение в JSON
|
| 494 |
-
json_path = os.path.join(SAMPLES_DIR, f"{sanitize_filename(last_name)}_correction.json")
|
| 495 |
-
to_save = {
|
| 496 |
-
"model_name": last_name,
|
| 497 |
-
"vae_normalization_summary": norm_summaries.get(last_name, {}),
|
| 498 |
-
"global_correction": correction_global,
|
| 499 |
-
"per_channel_means": ch_means,
|
| 500 |
-
"per_channel_stds": ch_stds,
|
| 501 |
-
"per_channel_correction": correction_per_channel,
|
| 502 |
-
"apply_order": {
|
| 503 |
-
"forward": "z_model -> (z - global_shift)*global_scale -> (per-channel: (z - mean_c)/std_c)",
|
| 504 |
-
"inverse": "z_corr -> (per-channel: z*std_c + mean_c) -> (z/global_scale + global_shift)"
|
| 505 |
-
},
|
| 506 |
-
"note": "Эти коэффициенты рассчитаны по z_model (после встроенных VAE shift/scale), чтобы привести распределение к N(0,1)."
|
| 507 |
-
}
|
| 508 |
-
with open(json_path, "w", encoding="utf-8") as f:
|
| 509 |
-
json.dump(to_save, f, ensure_ascii=False, indent=2)
|
| 510 |
-
print("Corrections JSON saved to:", os.path.abspath(json_path))
|
| 511 |
-
|
| 512 |
-
print("\n✅ Готово. Сэмплы сохранены в:", os.path.abspath(SAMPLES_DIR))
|
| 513 |
-
|
| 514 |
-
|
| 515 |
-
if __name__ == "__main__":
|
| 516 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sdxl_vae_a1111.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 334640988
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8f8e696f579f70d185f4b944a0d821ab5578a0915ac079fe44c148ce5102cc5b
|
| 3 |
size 334640988
|
simple_vae/config.json
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "AutoencoderKL",
|
| 3 |
-
"_diffusers_version": "0.35.0.dev0",
|
| 4 |
-
"_name_or_path": "simple_vae",
|
| 5 |
-
"act_fn": "silu",
|
| 6 |
-
"block_out_channels": [
|
| 7 |
-
128,
|
| 8 |
-
256,
|
| 9 |
-
512,
|
| 10 |
-
512
|
| 11 |
-
],
|
| 12 |
-
"down_block_types": [
|
| 13 |
-
"DownEncoderBlock2D",
|
| 14 |
-
"DownEncoderBlock2D",
|
| 15 |
-
"DownEncoderBlock2D",
|
| 16 |
-
"DownEncoderBlock2D"
|
| 17 |
-
],
|
| 18 |
-
"force_upcast": false,
|
| 19 |
-
"in_channels": 3,
|
| 20 |
-
"latent_channels": 16,
|
| 21 |
-
"latents_mean": null,
|
| 22 |
-
"latents_std": null,
|
| 23 |
-
"layers_per_block": 2,
|
| 24 |
-
"mid_block_add_attention": true,
|
| 25 |
-
"norm_num_groups": 32,
|
| 26 |
-
"out_channels": 3,
|
| 27 |
-
"sample_size": 1024,
|
| 28 |
-
"scaling_factor": 1.0,
|
| 29 |
-
"shift_factor": 0,
|
| 30 |
-
"up_block_types": [
|
| 31 |
-
"UpDecoderBlock2D",
|
| 32 |
-
"UpDecoderBlock2D",
|
| 33 |
-
"UpDecoderBlock2D",
|
| 34 |
-
"UpDecoderBlock2D"
|
| 35 |
-
],
|
| 36 |
-
"use_post_quant_conv": true,
|
| 37 |
-
"use_quant_conv": true
|
| 38 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
simple_vae/diffusion_pytorch_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:8ba1d500c4bd376a7c8662a35fa1857c7e577da0635414b524180852143ef2f6
|
| 3 |
-
size 335311892
|
|
|
|
|
|
|
|
|
|
|
|
simple_vae_nightly/config.json
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "AutoencoderKL",
|
| 3 |
-
"_diffusers_version": "0.35.0.dev0",
|
| 4 |
-
"_name_or_path": "simple_vae",
|
| 5 |
-
"act_fn": "silu",
|
| 6 |
-
"block_out_channels": [
|
| 7 |
-
128,
|
| 8 |
-
256,
|
| 9 |
-
512,
|
| 10 |
-
512
|
| 11 |
-
],
|
| 12 |
-
"down_block_types": [
|
| 13 |
-
"DownEncoderBlock2D",
|
| 14 |
-
"DownEncoderBlock2D",
|
| 15 |
-
"DownEncoderBlock2D",
|
| 16 |
-
"DownEncoderBlock2D"
|
| 17 |
-
],
|
| 18 |
-
"force_upcast": false,
|
| 19 |
-
"in_channels": 3,
|
| 20 |
-
"latent_channels": 16,
|
| 21 |
-
"latents_mean": null,
|
| 22 |
-
"latents_std": null,
|
| 23 |
-
"layers_per_block": 2,
|
| 24 |
-
"mid_block_add_attention": true,
|
| 25 |
-
"norm_num_groups": 32,
|
| 26 |
-
"out_channels": 3,
|
| 27 |
-
"sample_size": 1024,
|
| 28 |
-
"scaling_factor": 1.0,
|
| 29 |
-
"shift_factor": 0,
|
| 30 |
-
"up_block_types": [
|
| 31 |
-
"UpDecoderBlock2D",
|
| 32 |
-
"UpDecoderBlock2D",
|
| 33 |
-
"UpDecoderBlock2D",
|
| 34 |
-
"UpDecoderBlock2D"
|
| 35 |
-
],
|
| 36 |
-
"use_post_quant_conv": true,
|
| 37 |
-
"use_quant_conv": true
|
| 38 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
simple_vae_nightly/diffusion_pytorch_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b39620d0953839362425f03674e6c3e37f03d20be3fbd7f281baea4dfc336a40
|
| 3 |
-
size 335311892
|
|
|
|
|
|
|
|
|
|
|
|
train_sdxl_vae_wan.py → src/train_sdxl_vae.py
RENAMED
|
File without changes
|
train_sdxl_vae.py
DELETED
|
@@ -1,547 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
import os
|
| 3 |
-
import math
|
| 4 |
-
import re
|
| 5 |
-
import torch
|
| 6 |
-
import numpy as np
|
| 7 |
-
import random
|
| 8 |
-
import gc
|
| 9 |
-
from datetime import datetime
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
import torchvision.transforms as transforms
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
-
from torch.utils.data import DataLoader, Dataset
|
| 15 |
-
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
-
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
-
from accelerate import Accelerator
|
| 18 |
-
from PIL import Image, UnidentifiedImageError
|
| 19 |
-
from tqdm import tqdm
|
| 20 |
-
import bitsandbytes as bnb
|
| 21 |
-
import wandb
|
| 22 |
-
import lpips # pip install lpips
|
| 23 |
-
from collections import deque
|
| 24 |
-
|
| 25 |
-
# --------------------------- Параметры ---------------------------
|
| 26 |
-
ds_path = "/workspace/png"
|
| 27 |
-
project = "simple_vae"
|
| 28 |
-
batch_size = 3
|
| 29 |
-
base_learning_rate = 5e-5
|
| 30 |
-
min_learning_rate = 9e-7
|
| 31 |
-
num_epochs = 16
|
| 32 |
-
sample_interval_share = 10
|
| 33 |
-
use_wandb = True
|
| 34 |
-
save_model = True
|
| 35 |
-
use_decay = True
|
| 36 |
-
asymmetric = False
|
| 37 |
-
optimizer_type = "adam8bit"
|
| 38 |
-
dtype = torch.float32
|
| 39 |
-
# model_resolution — то, что подавается в VAE (низкое разрешение)
|
| 40 |
-
model_resolution = 512 # бывший `resolution`
|
| 41 |
-
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
|
| 42 |
-
high_resolution = 512
|
| 43 |
-
limit = 0
|
| 44 |
-
save_barrier = 1.03
|
| 45 |
-
warmup_percent = 0.01
|
| 46 |
-
percentile_clipping = 95
|
| 47 |
-
beta2 = 0.97
|
| 48 |
-
eps = 1e-6
|
| 49 |
-
clip_grad_norm = 1.0
|
| 50 |
-
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
|
| 51 |
-
gradient_accumulation_steps = 5
|
| 52 |
-
generated_folder = "samples"
|
| 53 |
-
save_as = "simple_vae_nightly"
|
| 54 |
-
num_workers = 0
|
| 55 |
-
device = None # accelerator задаст устройство
|
| 56 |
-
|
| 57 |
-
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
| 58 |
-
# Итоговые доли в total loss (сумма = 1.0)
|
| 59 |
-
loss_ratios = {
|
| 60 |
-
"lpips": 0.85,
|
| 61 |
-
"edge": 0.05,
|
| 62 |
-
"mse": 0.05,
|
| 63 |
-
"mae": 0.05,
|
| 64 |
-
}
|
| 65 |
-
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
| 66 |
-
|
| 67 |
-
# --------------------------- параметры препроцессинга ---------------------------
|
| 68 |
-
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1280
|
| 69 |
-
|
| 70 |
-
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 71 |
-
|
| 72 |
-
accelerator = Accelerator(
|
| 73 |
-
mixed_precision=mixed_precision,
|
| 74 |
-
gradient_accumulation_steps=gradient_accumulation_steps
|
| 75 |
-
)
|
| 76 |
-
device = accelerator.device
|
| 77 |
-
|
| 78 |
-
# reproducibility
|
| 79 |
-
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 80 |
-
torch.manual_seed(seed)
|
| 81 |
-
np.random.seed(seed)
|
| 82 |
-
random.seed(seed)
|
| 83 |
-
|
| 84 |
-
torch.backends.cudnn.benchmark = False
|
| 85 |
-
|
| 86 |
-
# --------------------------- WandB ---------------------------
|
| 87 |
-
if use_wandb and accelerator.is_main_process:
|
| 88 |
-
wandb.init(project=project, config={
|
| 89 |
-
"batch_size": batch_size,
|
| 90 |
-
"base_learning_rate": base_learning_rate,
|
| 91 |
-
"num_epochs": num_epochs,
|
| 92 |
-
"optimizer_type": optimizer_type,
|
| 93 |
-
"model_resolution": model_resolution,
|
| 94 |
-
"high_resolution": high_resolution,
|
| 95 |
-
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 96 |
-
})
|
| 97 |
-
|
| 98 |
-
# --------------------------- VAE ---------------------------
|
| 99 |
-
if model_resolution==high_resolution and not asymmetric:
|
| 100 |
-
vae = AutoencoderKL.from_pretrained(project).to(dtype)
|
| 101 |
-
else:
|
| 102 |
-
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
|
| 103 |
-
|
| 104 |
-
# torch.compile (если доступно) — просто и без лишней логики
|
| 105 |
-
if hasattr(torch, "compile"):
|
| 106 |
-
try:
|
| 107 |
-
vae = torch.compile(vae)
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print(f"[WARN] torch.compile failed: {e}")
|
| 110 |
-
|
| 111 |
-
# >>> Заморозка всех параметров, затем выборочная разморозка
|
| 112 |
-
for p in vae.parameters():
|
| 113 |
-
p.requires_grad = False
|
| 114 |
-
|
| 115 |
-
decoder = getattr(vae, "decoder", None)
|
| 116 |
-
if decoder is None:
|
| 117 |
-
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
|
| 118 |
-
|
| 119 |
-
unfrozen_param_names = []
|
| 120 |
-
|
| 121 |
-
if not hasattr(decoder, "up_blocks"):
|
| 122 |
-
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
|
| 123 |
-
|
| 124 |
-
# >>> Размораживаем все up_blocks и mid_block (как было в твоём варианте start_idx=0)
|
| 125 |
-
n_up = len(decoder.up_blocks)
|
| 126 |
-
start_idx = 0
|
| 127 |
-
for idx in range(start_idx, n_up):
|
| 128 |
-
block = decoder.up_blocks[idx]
|
| 129 |
-
for name, p in block.named_parameters():
|
| 130 |
-
p.requires_grad = True
|
| 131 |
-
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
|
| 132 |
-
|
| 133 |
-
if hasattr(decoder, "mid_block"):
|
| 134 |
-
for name, p in decoder.mid_block.named_parameters():
|
| 135 |
-
p.requires_grad = True
|
| 136 |
-
unfrozen_param_names.append(f"decoder.mid_block.{name}")
|
| 137 |
-
else:
|
| 138 |
-
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
|
| 139 |
-
|
| 140 |
-
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 141 |
-
for nm in unfrozen_param_names[:200]:
|
| 142 |
-
print(" ", nm)
|
| 143 |
-
|
| 144 |
-
# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
|
| 145 |
-
trainable_module = vae.decoder
|
| 146 |
-
|
| 147 |
-
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
|
| 148 |
-
class PngFolderDataset(Dataset):
|
| 149 |
-
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 150 |
-
self.root_dir = root_dir
|
| 151 |
-
self.resolution = resolution
|
| 152 |
-
self.paths = []
|
| 153 |
-
# collect png files recursively
|
| 154 |
-
for root, _, files in os.walk(root_dir):
|
| 155 |
-
for fname in files:
|
| 156 |
-
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 157 |
-
self.paths.append(os.path.join(root, fname))
|
| 158 |
-
# optional limit
|
| 159 |
-
if limit:
|
| 160 |
-
self.paths = self.paths[:limit]
|
| 161 |
-
# verify images and keep only valid ones
|
| 162 |
-
valid = []
|
| 163 |
-
for p in self.paths:
|
| 164 |
-
try:
|
| 165 |
-
with Image.open(p) as im:
|
| 166 |
-
im.verify() # fast check for truncated/corrupted images
|
| 167 |
-
valid.append(p)
|
| 168 |
-
except (OSError, UnidentifiedImageError):
|
| 169 |
-
# skip corrupted image
|
| 170 |
-
continue
|
| 171 |
-
self.paths = valid
|
| 172 |
-
if len(self.paths) == 0:
|
| 173 |
-
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 174 |
-
# final shuffle for randomness
|
| 175 |
-
random.shuffle(self.paths)
|
| 176 |
-
|
| 177 |
-
def __len__(self):
|
| 178 |
-
return len(self.paths)
|
| 179 |
-
|
| 180 |
-
def __getitem__(self, idx):
|
| 181 |
-
p = self.paths[idx % len(self.paths)]
|
| 182 |
-
# open and convert to RGB; ensure file is closed promptly
|
| 183 |
-
with Image.open(p) as img:
|
| 184 |
-
img = img.convert("RGB")
|
| 185 |
-
# пережимаем длинную сторону до resize_long_side (Lanczos)
|
| 186 |
-
if not resize_long_side or resize_long_side <= 0:
|
| 187 |
-
return img
|
| 188 |
-
w, h = img.size
|
| 189 |
-
long = max(w, h)
|
| 190 |
-
if long <= resize_long_side:
|
| 191 |
-
return img
|
| 192 |
-
scale = resize_long_side / float(long)
|
| 193 |
-
new_w = int(round(w * scale))
|
| 194 |
-
new_h = int(round(h * scale))
|
| 195 |
-
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 196 |
-
|
| 197 |
-
# --------------------------- Датасет и трансформы ---------------------------
|
| 198 |
-
|
| 199 |
-
def random_crop(img, sz):
|
| 200 |
-
w, h = img.size
|
| 201 |
-
if w < sz or h < sz:
|
| 202 |
-
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 203 |
-
x = random.randint(0, max(1, img.width - sz))
|
| 204 |
-
y = random.randint(0, max(1, img.height - sz))
|
| 205 |
-
return img.crop((x, y, x + sz, y + sz))
|
| 206 |
-
|
| 207 |
-
tfm = transforms.Compose([
|
| 208 |
-
transforms.ToTensor(),
|
| 209 |
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 210 |
-
])
|
| 211 |
-
|
| 212 |
-
# build dataset using high_resolution crops
|
| 213 |
-
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
| 214 |
-
if len(dataset) < batch_size:
|
| 215 |
-
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 216 |
-
|
| 217 |
-
# collate_fn кропит до high_resolution
|
| 218 |
-
|
| 219 |
-
def collate_fn(batch):
|
| 220 |
-
imgs = []
|
| 221 |
-
for img in batch: # img is PIL.Image
|
| 222 |
-
img = random_crop(img, high_resolution) # кропим high-res
|
| 223 |
-
imgs.append(tfm(img))
|
| 224 |
-
return torch.stack(imgs)
|
| 225 |
-
|
| 226 |
-
dataloader = DataLoader(
|
| 227 |
-
dataset,
|
| 228 |
-
batch_size=batch_size,
|
| 229 |
-
shuffle=True,
|
| 230 |
-
collate_fn=collate_fn,
|
| 231 |
-
num_workers=num_workers,
|
| 232 |
-
pin_memory=True,
|
| 233 |
-
drop_last=True
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
# --------------------------- Оптимизатор ---------------------------
|
| 237 |
-
|
| 238 |
-
def get_param_groups(module, weight_decay=0.001):
|
| 239 |
-
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 240 |
-
decay_params = []
|
| 241 |
-
no_decay_params = []
|
| 242 |
-
for n, p in module.named_parameters():
|
| 243 |
-
if not p.requires_grad:
|
| 244 |
-
continue
|
| 245 |
-
if any(nd in n for nd in no_decay):
|
| 246 |
-
no_decay_params.append(p)
|
| 247 |
-
else:
|
| 248 |
-
decay_params.append(p)
|
| 249 |
-
return [
|
| 250 |
-
{"params": decay_params, "weight_decay": weight_decay},
|
| 251 |
-
{"params": no_decay_params, "weight_decay": 0.0},
|
| 252 |
-
]
|
| 253 |
-
|
| 254 |
-
def create_optimizer(name, param_groups):
|
| 255 |
-
if name == "adam8bit":
|
| 256 |
-
return bnb.optim.AdamW8bit(
|
| 257 |
-
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
|
| 258 |
-
)
|
| 259 |
-
raise ValueError(name)
|
| 260 |
-
|
| 261 |
-
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
|
| 262 |
-
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 263 |
-
|
| 264 |
-
# --------------------------- Подготовка Accelerate (вместе) ---------------------------
|
| 265 |
-
|
| 266 |
-
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
|
| 267 |
-
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # чис��о optimizer.step() за эпоху
|
| 268 |
-
total_steps = steps_per_epoch * num_epochs
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
def lr_lambda(step):
|
| 272 |
-
if not use_decay:
|
| 273 |
-
return 1.0
|
| 274 |
-
x = float(step) / float(max(1, total_steps))
|
| 275 |
-
warmup = float(warmup_percent)
|
| 276 |
-
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 277 |
-
if x < warmup:
|
| 278 |
-
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 279 |
-
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 280 |
-
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 281 |
-
|
| 282 |
-
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 283 |
-
|
| 284 |
-
# Подготовка
|
| 285 |
-
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 286 |
-
|
| 287 |
-
trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]
|
| 288 |
-
|
| 289 |
-
# --------------------------- LPIPS и вспомогательные функции ---------------------------
|
| 290 |
-
_lpips_net = None
|
| 291 |
-
|
| 292 |
-
def _get_lpips():
|
| 293 |
-
global _lpips_net
|
| 294 |
-
if _lpips_net is None:
|
| 295 |
-
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 296 |
-
return _lpips_net
|
| 297 |
-
|
| 298 |
-
# Собель для edge loss
|
| 299 |
-
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
| 300 |
-
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
| 301 |
-
|
| 302 |
-
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
| 303 |
-
# x: [B,C,H,W] в [-1,1]
|
| 304 |
-
C = x.shape[1]
|
| 305 |
-
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 306 |
-
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 307 |
-
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 308 |
-
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 309 |
-
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 310 |
-
|
| 311 |
-
# Нормализация лоссов по медианам: считаем КОЭФФИЦИЕНТЫ
|
| 312 |
-
class MedianLossNormalizer:
|
| 313 |
-
def __init__(self, desired_ratios: dict, window_steps: int):
|
| 314 |
-
# нормируем доли на случай, если сумма != 1
|
| 315 |
-
s = sum(desired_ratios.values())
|
| 316 |
-
self.ratios = {k: (v / s) for k, v in desired_ratios.items()}
|
| 317 |
-
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
| 318 |
-
self.window = window_steps
|
| 319 |
-
|
| 320 |
-
def update_and_total(self, abs_losses: dict):
|
| 321 |
-
# Заполняем буферы фактическими АБСОЛЮТНЫМИ значениями лоссов
|
| 322 |
-
for k, v in abs_losses.items():
|
| 323 |
-
if k in self.buffers:
|
| 324 |
-
self.buffers[k].append(float(v.detach().cpu()))
|
| 325 |
-
# Медианы (устойчивые к выбросам)
|
| 326 |
-
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
| 327 |
-
# Вычисляем КОЭФФИЦИЕНТЫ как ratio_k / median_k — т.е. именно коэффициенты, а не значения
|
| 328 |
-
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
| 329 |
-
# Важно: при таких коэффициентах сумма (coeff_k * median_k) = сумма(ratio_k) = 1, т.е. масштаб стабилен
|
| 330 |
-
total = sum(coeffs[k] * abs_losses[k] for k in coeffs)
|
| 331 |
-
return total, coeffs, meds
|
| 332 |
-
|
| 333 |
-
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
| 334 |
-
|
| 335 |
-
# --------------------------- Сэмплы ---------------------------
|
| 336 |
-
@torch.no_grad()
|
| 337 |
-
def get_fixed_samples(n=3):
|
| 338 |
-
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 339 |
-
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
|
| 340 |
-
tensors = []
|
| 341 |
-
for img in pil_imgs:
|
| 342 |
-
img = random_crop(img, high_resolution) # high-res fixed samples
|
| 343 |
-
tensors.append(tfm(img))
|
| 344 |
-
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 345 |
-
|
| 346 |
-
fixed_samples = get_fixed_samples()
|
| 347 |
-
|
| 348 |
-
@torch.no_grad()
|
| 349 |
-
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
| 350 |
-
# img_tensor: [C,H,W] in [-1,1]
|
| 351 |
-
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
| 352 |
-
return Image.fromarray(arr)
|
| 353 |
-
|
| 354 |
-
@torch.no_grad()
|
| 355 |
-
def generate_and_save_samples(step=None):
|
| 356 |
-
try:
|
| 357 |
-
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 358 |
-
lpips_net = _get_lpips()
|
| 359 |
-
with torch.no_grad():
|
| 360 |
-
# Готовим low-res вход для кодера ВСЕГДА под model_resolution
|
| 361 |
-
orig_high = fixed_samples # [B,C,H,W] в [-1,1]
|
| 362 |
-
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 363 |
-
# dtype как у модели
|
| 364 |
-
model_dtype = next(temp_vae.parameters()).dtype
|
| 365 |
-
orig_low = orig_low.to(dtype=model_dtype)
|
| 366 |
-
# encode/decode
|
| 367 |
-
latents = temp_vae.encode(orig_low).latent_dist.mean
|
| 368 |
-
rec = temp_vae.decode(latents).sample
|
| 369 |
-
|
| 370 |
-
# Приводим spatial размер рекона к high-res (downsample для асимметричных VAE)
|
| 371 |
-
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 372 |
-
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 373 |
-
|
| 374 |
-
# Сохраняем ПЕРВЫЙ семпл: real и decoded без номера шага в имени
|
| 375 |
-
first_real = _to_pil_uint8(orig_high[0])
|
| 376 |
-
first_dec = _to_pil_uint8(rec[0])
|
| 377 |
-
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
| 378 |
-
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
| 379 |
-
|
| 380 |
-
# Дополнительно сохраняем текущие реконструкции без номера шага (чтобы не плодить файлы — будут перезаписываться)
|
| 381 |
-
for i in range(rec.shape[0]):
|
| 382 |
-
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
| 383 |
-
|
| 384 |
-
# LPIPS на полном изображении (high-res) — для лога
|
| 385 |
-
lpips_scores = []
|
| 386 |
-
for i in range(rec.shape[0]):
|
| 387 |
-
orig_full = orig_high[i:i+1].to(torch.float32)
|
| 388 |
-
rec_full = rec[i:i+1].to(torch.float32)
|
| 389 |
-
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 390 |
-
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 391 |
-
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 392 |
-
lpips_scores.append(lpips_val)
|
| 393 |
-
avg_lpips = float(np.mean(lpips_scores))
|
| 394 |
-
|
| 395 |
-
if use_wandb and accelerator.is_main_process:
|
| 396 |
-
wandb.log({
|
| 397 |
-
"lpips_mean": avg_lpips,
|
| 398 |
-
}, step=step)
|
| 399 |
-
finally:
|
| 400 |
-
gc.collect()
|
| 401 |
-
torch.cuda.empty_cache()
|
| 402 |
-
|
| 403 |
-
if accelerator.is_main_process and save_model:
|
| 404 |
-
print("Генерация сэмплов до старта обучения...")
|
| 405 |
-
generate_and_save_samples(0)
|
| 406 |
-
|
| 407 |
-
accelerator.wait_for_everyone()
|
| 408 |
-
|
| 409 |
-
# --------------------------- Тренировка ---------------------------
|
| 410 |
-
|
| 411 |
-
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 412 |
-
global_step = 0
|
| 413 |
-
min_loss = float("inf")
|
| 414 |
-
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 415 |
-
|
| 416 |
-
for epoch in range(num_epochs):
|
| 417 |
-
vae.train()
|
| 418 |
-
batch_losses = []
|
| 419 |
-
batch_grads = []
|
| 420 |
-
# Доп. трекинг по отдельным лоссам
|
| 421 |
-
track_losses = {k: [] for k in loss_ratios.keys()}
|
| 422 |
-
for imgs in dataloader:
|
| 423 |
-
with accelerator.accumulate(vae):
|
| 424 |
-
# imgs: high-res tensor from dataloader ([-1,1]), move to device
|
| 425 |
-
imgs = imgs.to(accelerator.device)
|
| 426 |
-
|
| 427 |
-
# ВСЕГДА даунсемплим вход под model_resolution для кодера
|
| 428 |
-
# Тупая железяка норовит все по своему сделать
|
| 429 |
-
if high_resolution != model_resolution:
|
| 430 |
-
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 431 |
-
else:
|
| 432 |
-
imgs_low = imgs
|
| 433 |
-
|
| 434 |
-
# ensure dtype matches model params to avoid float/half mismatch
|
| 435 |
-
model_dtype = next(vae.parameters()).dtype
|
| 436 |
-
if imgs_low.dtype != model_dtype:
|
| 437 |
-
imgs_low_model = imgs_low.to(dtype=model_dtype)
|
| 438 |
-
else:
|
| 439 |
-
imgs_low_model = imgs_low
|
| 440 |
-
|
| 441 |
-
# Encode/decode
|
| 442 |
-
latents = vae.encode(imgs_low_model).latent_dist.mean
|
| 443 |
-
rec = vae.decode(latents).sample # rec может быть увеличенным (асимметричный VAE)
|
| 444 |
-
|
| 445 |
-
# Приводим размер к high-res
|
| 446 |
-
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 447 |
-
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 448 |
-
|
| 449 |
-
# Лоссы считаем на high-res
|
| 450 |
-
rec_f32 = rec.to(torch.float32)
|
| 451 |
-
imgs_f32 = imgs.to(torch.float32)
|
| 452 |
-
|
| 453 |
-
# Отдельные лоссы
|
| 454 |
-
abs_losses = {
|
| 455 |
-
"mae": F.l1_loss(rec_f32, imgs_f32),
|
| 456 |
-
"mse": F.mse_loss(rec_f32, imgs_f32),
|
| 457 |
-
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
| 458 |
-
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
| 459 |
-
}
|
| 460 |
-
|
| 461 |
-
# Total с медианными КОЭФФИЦИЕНТАМИ
|
| 462 |
-
# Не надо так орать когда у тебя получилось понять мою идею
|
| 463 |
-
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
| 464 |
-
|
| 465 |
-
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 466 |
-
print("NaN/Inf loss – stopping")
|
| 467 |
-
raise RuntimeError("NaN/Inf loss")
|
| 468 |
-
|
| 469 |
-
accelerator.backward(total_loss)
|
| 470 |
-
|
| 471 |
-
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 472 |
-
if accelerator.sync_gradients:
|
| 473 |
-
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 474 |
-
optimizer.step()
|
| 475 |
-
scheduler.step()
|
| 476 |
-
optimizer.zero_grad(set_to_none=True)
|
| 477 |
-
|
| 478 |
-
global_step += 1
|
| 479 |
-
progress.update(1)
|
| 480 |
-
|
| 481 |
-
# --- Логирование ---
|
| 482 |
-
if accelerator.is_main_process:
|
| 483 |
-
try:
|
| 484 |
-
current_lr = optimizer.param_groups[0]["lr"]
|
| 485 |
-
except Exception:
|
| 486 |
-
current_lr = scheduler.get_last_lr()[0]
|
| 487 |
-
|
| 488 |
-
batch_losses.append(total_loss.detach().item())
|
| 489 |
-
batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
|
| 490 |
-
for k, v in abs_losses.items():
|
| 491 |
-
track_losses[k].append(float(v.detach().item()))
|
| 492 |
-
|
| 493 |
-
if use_wandb and accelerator.sync_gradients:
|
| 494 |
-
log_dict = {
|
| 495 |
-
"total_loss": float(total_loss.detach().item()),
|
| 496 |
-
"learning_rate": current_lr,
|
| 497 |
-
"epoch": epoch,
|
| 498 |
-
"grad_norm": batch_grads[-1],
|
| 499 |
-
}
|
| 500 |
-
# добавляем отдельные лоссы
|
| 501 |
-
for k, v in abs_losses.items():
|
| 502 |
-
log_dict[f"loss_{k}"] = float(v.detach().item())
|
| 503 |
-
# логи коэффициентов и медиан
|
| 504 |
-
for k in coeffs:
|
| 505 |
-
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
| 506 |
-
log_dict[f"median_{k}"] = float(meds[k])
|
| 507 |
-
wandb.log(log_dict, step=global_step)
|
| 508 |
-
|
| 509 |
-
# периодические сэмплы и чекпоинты
|
| 510 |
-
if global_step > 0 and global_step % sample_interval == 0:
|
| 511 |
-
if accelerator.is_main_process:
|
| 512 |
-
generate_and_save_samples(global_step)
|
| 513 |
-
accelerator.wait_for_everyone()
|
| 514 |
-
|
| 515 |
-
# Средние по последним итерациям
|
| 516 |
-
n_micro = sample_interval * gradient_accumulation_steps
|
| 517 |
-
if len(batch_losses) >= n_micro:
|
| 518 |
-
avg_loss = float(np.mean(batch_losses[-n_micro:]))
|
| 519 |
-
else:
|
| 520 |
-
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 521 |
-
|
| 522 |
-
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 523 |
-
|
| 524 |
-
if accelerator.is_main_process:
|
| 525 |
-
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 526 |
-
if save_model and avg_loss < min_loss * save_barrier:
|
| 527 |
-
min_loss = avg_loss
|
| 528 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 529 |
-
if use_wandb:
|
| 530 |
-
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
| 531 |
-
|
| 532 |
-
if accelerator.is_main_process:
|
| 533 |
-
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 534 |
-
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 535 |
-
if use_wandb:
|
| 536 |
-
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 537 |
-
|
| 538 |
-
# --------------------------- Финальное сохранение ---------------------------
|
| 539 |
-
if accelerator.is_main_process:
|
| 540 |
-
print("Training finished – saving final model")
|
| 541 |
-
if save_model:
|
| 542 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 543 |
-
|
| 544 |
-
accelerator.free_memory()
|
| 545 |
-
if torch.distributed.is_initialized():
|
| 546 |
-
torch.distributed.destroy_process_group()
|
| 547 |
-
print("Готово!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_sdxl_vae_full.py
DELETED
|
@@ -1,594 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
import os
|
| 3 |
-
import math
|
| 4 |
-
import re
|
| 5 |
-
import torch
|
| 6 |
-
import numpy as np
|
| 7 |
-
import random
|
| 8 |
-
import gc
|
| 9 |
-
from datetime import datetime
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
import torchvision.transforms as transforms
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
-
from torch.utils.data import DataLoader, Dataset
|
| 15 |
-
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
-
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
-
from accelerate import Accelerator
|
| 18 |
-
from PIL import Image, UnidentifiedImageError
|
| 19 |
-
from tqdm import tqdm
|
| 20 |
-
import bitsandbytes as bnb
|
| 21 |
-
import wandb
|
| 22 |
-
import lpips # pip install lpips
|
| 23 |
-
from collections import deque
|
| 24 |
-
|
| 25 |
-
# --------------------------- Параметры ---------------------------
|
| 26 |
-
ds_path = "/workspace/png"
|
| 27 |
-
project = "simple_vae"
|
| 28 |
-
batch_size = 3
|
| 29 |
-
base_learning_rate = 2e-6
|
| 30 |
-
min_learning_rate = 8e-7
|
| 31 |
-
num_epochs = 8
|
| 32 |
-
sample_interval_share = 10
|
| 33 |
-
use_wandb = True
|
| 34 |
-
save_model = True
|
| 35 |
-
use_decay = True
|
| 36 |
-
asymmetric = False
|
| 37 |
-
optimizer_type = "adam8bit"
|
| 38 |
-
dtype = torch.float32
|
| 39 |
-
# model_resolution — то, что подавается в VAE (низкое разрешение)
|
| 40 |
-
model_resolution = 512 # бывший `resolution`
|
| 41 |
-
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
|
| 42 |
-
high_resolution = 512
|
| 43 |
-
limit = 0
|
| 44 |
-
save_barrier = 1.03
|
| 45 |
-
warmup_percent = 0.01
|
| 46 |
-
percentile_clipping = 95
|
| 47 |
-
beta2 = 0.97
|
| 48 |
-
eps = 1e-6
|
| 49 |
-
clip_grad_norm = 1.0
|
| 50 |
-
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
|
| 51 |
-
gradient_accumulation_steps = 5
|
| 52 |
-
generated_folder = "samples"
|
| 53 |
-
save_as = "simple_vae_nightly"
|
| 54 |
-
num_workers = 0
|
| 55 |
-
device = None # accelerator задаст устройство
|
| 56 |
-
|
| 57 |
-
# --------------------------- Тренировочные режимы ---------------------------
|
| 58 |
-
# CHANGED: добавлен параметр для полного обучения VAE (а не только декодера).
|
| 59 |
-
# Если False — поведение прежнее: учим только decoder.* (up_blocks + mid_block).
|
| 60 |
-
# Если True — размораживаем ВСЮ модель и добавляем KL-loss для энкодера.
|
| 61 |
-
full_training = False
|
| 62 |
-
|
| 63 |
-
# CHANGED: добавлен вес (через долю в нормализаторе) для KL, используется только при full_training=True.
|
| 64 |
-
kl_ratio = 0.00 # простая доля для KL в общей смеси (KISS). Игнорируется, если full_training=False.
|
| 65 |
-
|
| 66 |
-
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
| 67 |
-
# Итоговые доли в total loss (сумма = 1.0 после нормализации).
|
| 68 |
-
loss_ratios = {
|
| 69 |
-
"lpips": 0.60,
|
| 70 |
-
"edge": 0.10,
|
| 71 |
-
"mse": 0.15,
|
| 72 |
-
"mae": 0.15,
|
| 73 |
-
# CHANGED: заранее добавлен ключ "kl" (по умолчанию 0.0). Если включаем full_training — активируем ниже.
|
| 74 |
-
"kl": 0.00,
|
| 75 |
-
}
|
| 76 |
-
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
| 77 |
-
|
| 78 |
-
# --------------------------- параметры препроцессинга ---------------------------
|
| 79 |
-
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1280
|
| 80 |
-
|
| 81 |
-
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 82 |
-
|
| 83 |
-
accelerator = Accelerator(
|
| 84 |
-
mixed_precision=mixed_precision,
|
| 85 |
-
gradient_accumulation_steps=gradient_accumulation_steps
|
| 86 |
-
)
|
| 87 |
-
device = accelerator.device
|
| 88 |
-
|
| 89 |
-
# reproducibility
|
| 90 |
-
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 91 |
-
torch.manual_seed(seed)
|
| 92 |
-
np.random.seed(seed)
|
| 93 |
-
random.seed(seed)
|
| 94 |
-
|
| 95 |
-
torch.backends.cudnn.benchmark = False
|
| 96 |
-
|
| 97 |
-
# --------------------------- WandB ---------------------------
|
| 98 |
-
if use_wandb and accelerator.is_main_process:
|
| 99 |
-
wandb.init(project=project, config={
|
| 100 |
-
"batch_size": batch_size,
|
| 101 |
-
"base_learning_rate": base_learning_rate,
|
| 102 |
-
"num_epochs": num_epochs,
|
| 103 |
-
"optimizer_type": optimizer_type,
|
| 104 |
-
"model_resolution": model_resolution,
|
| 105 |
-
"high_resolution": high_resolution,
|
| 106 |
-
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 107 |
-
"full_training": full_training, # CHANGED: логируем режим
|
| 108 |
-
"kl_ratio": kl_ratio, # CHANGED: логируем долю KL
|
| 109 |
-
})
|
| 110 |
-
|
| 111 |
-
# --------------------------- VAE ---------------------------
|
| 112 |
-
if model_resolution==high_resolution and not asymmetric:
|
| 113 |
-
vae = AutoencoderKL.from_pretrained(project).to(dtype)
|
| 114 |
-
else:
|
| 115 |
-
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
|
| 116 |
-
|
| 117 |
-
# torch.compile (если доступно) — просто и без лишней логики
|
| 118 |
-
if hasattr(torch, "compile"):
|
| 119 |
-
try:
|
| 120 |
-
vae = torch.compile(vae)
|
| 121 |
-
except Exception as e:
|
| 122 |
-
print(f"[WARN] torch.compile failed: {e}")
|
| 123 |
-
|
| 124 |
-
# >>> Стратегия заморозки / разморозки
|
| 125 |
-
for p in vae.parameters():
|
| 126 |
-
p.requires_grad = False
|
| 127 |
-
|
| 128 |
-
decoder = getattr(vae, "decoder", None)
|
| 129 |
-
if decoder is None:
|
| 130 |
-
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
|
| 131 |
-
|
| 132 |
-
unfrozen_param_names = []
|
| 133 |
-
|
| 134 |
-
if not full_training:
|
| 135 |
-
# === Прежнее поведение: обучаем только decoder.up_blocks и decoder.mid_block ===
|
| 136 |
-
if not hasattr(decoder, "up_blocks"):
|
| 137 |
-
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
|
| 138 |
-
|
| 139 |
-
n_up = len(decoder.up_blocks)
|
| 140 |
-
start_idx = 0
|
| 141 |
-
for idx in range(start_idx, n_up):
|
| 142 |
-
block = decoder.up_blocks[idx]
|
| 143 |
-
for name, p in block.named_parameters():
|
| 144 |
-
p.requires_grad = True
|
| 145 |
-
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
|
| 146 |
-
|
| 147 |
-
if hasattr(decoder, "mid_block"):
|
| 148 |
-
for name, p in decoder.mid_block.named_parameters():
|
| 149 |
-
p.requires_grad = True
|
| 150 |
-
unfrozen_param_names.append(f"decoder.mid_block.{name}")
|
| 151 |
-
else:
|
| 152 |
-
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
|
| 153 |
-
|
| 154 |
-
# Обучаем только декодер
|
| 155 |
-
trainable_module = vae.decoder
|
| 156 |
-
else:
|
| 157 |
-
# === CHANGED: Полное обучение — размораживаем ВСЕ слои VAE (и энкодер, и декодер, и пост-проекцию) ===
|
| 158 |
-
for name, p in vae.named_parameters():
|
| 159 |
-
p.requires_grad = True
|
| 160 |
-
unfrozen_param_names.append(name)
|
| 161 |
-
trainable_module = vae # CHANGED: учим всю модель
|
| 162 |
-
|
| 163 |
-
# CHANGED: активируем KL-долю в нормализаторе
|
| 164 |
-
loss_ratios["kl"] = float(kl_ratio)
|
| 165 |
-
|
| 166 |
-
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 167 |
-
for nm in unfrozen_param_names[:200]:
|
| 168 |
-
print(" ", nm)
|
| 169 |
-
|
| 170 |
-
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
|
| 171 |
-
class PngFolderDataset(Dataset):
|
| 172 |
-
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 173 |
-
self.root_dir = root_dir
|
| 174 |
-
self.resolution = resolution
|
| 175 |
-
self.paths = []
|
| 176 |
-
# collect png files recursively
|
| 177 |
-
for root, _, files in os.walk(root_dir):
|
| 178 |
-
for fname in files:
|
| 179 |
-
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 180 |
-
self.paths.append(os.path.join(root, fname))
|
| 181 |
-
# optional limit
|
| 182 |
-
if limit:
|
| 183 |
-
self.paths = self.paths[:limit]
|
| 184 |
-
# verify images and keep only valid ones
|
| 185 |
-
valid = []
|
| 186 |
-
for p in self.paths:
|
| 187 |
-
try:
|
| 188 |
-
with Image.open(p) as im:
|
| 189 |
-
im.verify() # fast check for truncated/corrupted images
|
| 190 |
-
valid.append(p)
|
| 191 |
-
except (OSError, UnidentifiedImageError):
|
| 192 |
-
# skip corrupted image
|
| 193 |
-
continue
|
| 194 |
-
self.paths = valid
|
| 195 |
-
if len(self.paths) == 0:
|
| 196 |
-
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 197 |
-
# final shuffle for randomness
|
| 198 |
-
random.shuffle(self.paths)
|
| 199 |
-
|
| 200 |
-
def __len__(self):
|
| 201 |
-
return len(self.paths)
|
| 202 |
-
|
| 203 |
-
def __getitem__(self, idx):
|
| 204 |
-
p = self.paths[idx % len(self.paths)]
|
| 205 |
-
# open and convert to RGB; ensure file is closed promptly
|
| 206 |
-
with Image.open(p) as img:
|
| 207 |
-
img = img.convert("RGB")
|
| 208 |
-
# пережимаем длинную сторону до resize_long_side (Lanczos)
|
| 209 |
-
if not resize_long_side or resize_long_side <= 0:
|
| 210 |
-
return img
|
| 211 |
-
w, h = img.size
|
| 212 |
-
long = max(w, h)
|
| 213 |
-
if long <= resize_long_side:
|
| 214 |
-
return img
|
| 215 |
-
scale = resize_long_side / float(long)
|
| 216 |
-
new_w = int(round(w * scale))
|
| 217 |
-
new_h = int(round(h * scale))
|
| 218 |
-
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 219 |
-
|
| 220 |
-
# --------------------------- Датасет и трансформы ---------------------------
|
| 221 |
-
|
| 222 |
-
def random_crop(img, sz):
|
| 223 |
-
w, h = img.size
|
| 224 |
-
if w < sz or h < sz:
|
| 225 |
-
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 226 |
-
x = random.randint(0, max(1, img.width - sz))
|
| 227 |
-
y = random.randint(0, max(1, img.height - sz))
|
| 228 |
-
return img.crop((x, y, x + sz, y + sz))
|
| 229 |
-
|
| 230 |
-
tfm = transforms.Compose([
|
| 231 |
-
transforms.ToTensor(),
|
| 232 |
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 233 |
-
])
|
| 234 |
-
|
| 235 |
-
# build dataset using high_resolution crops
|
| 236 |
-
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
| 237 |
-
if len(dataset) < batch_size:
|
| 238 |
-
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 239 |
-
|
| 240 |
-
# collate_fn кропит до high_resolution
|
| 241 |
-
def collate_fn(batch):
|
| 242 |
-
imgs = []
|
| 243 |
-
for img in batch: # img is PIL.Image
|
| 244 |
-
img = random_crop(img, high_resolution) # кропим high-res
|
| 245 |
-
imgs.append(tfm(img))
|
| 246 |
-
return torch.stack(imgs)
|
| 247 |
-
|
| 248 |
-
dataloader = DataLoader(
|
| 249 |
-
dataset,
|
| 250 |
-
batch_size=batch_size,
|
| 251 |
-
shuffle=True,
|
| 252 |
-
collate_fn=collate_fn,
|
| 253 |
-
num_workers=num_workers,
|
| 254 |
-
pin_memory=True,
|
| 255 |
-
drop_last=True
|
| 256 |
-
)
|
| 257 |
-
|
| 258 |
-
# --------------------------- Оптимизатор ---------------------------
|
| 259 |
-
|
| 260 |
-
def get_param_groups(module, weight_decay=0.001):
|
| 261 |
-
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 262 |
-
decay_params = []
|
| 263 |
-
no_decay_params = []
|
| 264 |
-
for n, p in module.named_parameters():
|
| 265 |
-
if not p.requires_grad:
|
| 266 |
-
continue
|
| 267 |
-
if any(nd in n for nd in no_decay):
|
| 268 |
-
no_decay_params.append(p)
|
| 269 |
-
else:
|
| 270 |
-
decay_params.append(p)
|
| 271 |
-
return [
|
| 272 |
-
{"params": decay_params, "weight_decay": weight_decay},
|
| 273 |
-
{"params": no_decay_params, "weight_decay": 0.0},
|
| 274 |
-
]
|
| 275 |
-
|
| 276 |
-
def create_optimizer(name, param_groups):
|
| 277 |
-
if name == "adam8bit":
|
| 278 |
-
return bnb.optim.AdamW8bit(
|
| 279 |
-
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
|
| 280 |
-
)
|
| 281 |
-
raise ValueError(name)
|
| 282 |
-
|
| 283 |
-
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
|
| 284 |
-
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 285 |
-
|
| 286 |
-
# --------------------------- График LR ---------------------------
|
| 287 |
-
|
| 288 |
-
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
|
| 289 |
-
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # число optimizer.step() за эпоху
|
| 290 |
-
total_steps = steps_per_epoch * num_epochs
|
| 291 |
-
|
| 292 |
-
def lr_lambda(step):
|
| 293 |
-
if not use_decay:
|
| 294 |
-
return 1.0
|
| 295 |
-
x = float(step) / float(max(1, total_steps))
|
| 296 |
-
warmup = float(warmup_percent)
|
| 297 |
-
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 298 |
-
if x < warmup:
|
| 299 |
-
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 300 |
-
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 301 |
-
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 302 |
-
|
| 303 |
-
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 304 |
-
|
| 305 |
-
# Подготовка
|
| 306 |
-
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 307 |
-
|
| 308 |
-
# CHANGED: формируем список trainable_params исходя из выбранного trainable_module
|
| 309 |
-
trainable_params = [p for p in (trainable_module.parameters() if hasattr(trainable_module, "parameters") else []) if p.requires_grad]
|
| 310 |
-
|
| 311 |
-
# --------------------------- LPIPS и вспомогательные функции ---------------------------
|
| 312 |
-
_lpips_net = None
|
| 313 |
-
|
| 314 |
-
def _get_lpips():
|
| 315 |
-
global _lpips_net
|
| 316 |
-
if _lpips_net is None:
|
| 317 |
-
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 318 |
-
return _lpips_net
|
| 319 |
-
|
| 320 |
-
# Собель для edge loss
|
| 321 |
-
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
| 322 |
-
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
| 323 |
-
|
| 324 |
-
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
| 325 |
-
# x: [B,C,H,W] в [-1,1]
|
| 326 |
-
C = x.shape[1]
|
| 327 |
-
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 328 |
-
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 329 |
-
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 330 |
-
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 331 |
-
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 332 |
-
|
| 333 |
-
# Нормализация лоссов по медианам: считаем КОЭФФИЦИЕНТЫ
|
| 334 |
-
class MedianLossNormalizer:
|
| 335 |
-
def __init__(self, desired_ratios: dict, window_steps: int):
|
| 336 |
-
# нормируем доли на случай, если сумма != 1
|
| 337 |
-
s = sum(desired_ratios.values())
|
| 338 |
-
self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
|
| 339 |
-
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
| 340 |
-
self.window = window_steps
|
| 341 |
-
|
| 342 |
-
def update_and_total(self, abs_losses: dict):
|
| 343 |
-
# Заполняем буферы фактическими АБСОЛЮТНЫМИ значениями лоссов
|
| 344 |
-
for k, v in abs_losses.items():
|
| 345 |
-
if k in self.buffers:
|
| 346 |
-
self.buffers[k].append(float(v.detach().abs().cpu()))
|
| 347 |
-
# Медианы (устойчивые к выбросам)
|
| 348 |
-
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
| 349 |
-
# Вычисляем КОЭФФИЦИЕНТЫ как ratio_k / median_k — т.е. именно коэффициенты, а не значения
|
| 350 |
-
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
| 351 |
-
# Итоговый total — сумма по ключам, присутствующим в abs_losses
|
| 352 |
-
total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
|
| 353 |
-
return total, coeffs, meds
|
| 354 |
-
|
| 355 |
-
# CHANGED: создаём нормализатор ПОСЛЕ возможной активации kl_ratio выше
|
| 356 |
-
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
| 357 |
-
|
| 358 |
-
# --------------------------- Сэмплы ---------------------------
|
| 359 |
-
@torch.no_grad()
|
| 360 |
-
def get_fixed_samples(n=3):
|
| 361 |
-
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 362 |
-
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
|
| 363 |
-
tensors = []
|
| 364 |
-
for img in pil_imgs:
|
| 365 |
-
img = random_crop(img, high_resolution) # high-res fixed samples
|
| 366 |
-
tensors.append(tfm(img))
|
| 367 |
-
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 368 |
-
|
| 369 |
-
fixed_samples = get_fixed_samples()
|
| 370 |
-
|
| 371 |
-
@torch.no_grad()
|
| 372 |
-
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
| 373 |
-
# img_tensor: [C,H,W] in [-1,1]
|
| 374 |
-
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
| 375 |
-
return Image.fromarray(arr)
|
| 376 |
-
|
| 377 |
-
@torch.no_grad()
|
| 378 |
-
def generate_and_save_samples(step=None):
|
| 379 |
-
try:
|
| 380 |
-
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 381 |
-
lpips_net = _get_lpips()
|
| 382 |
-
with torch.no_grad():
|
| 383 |
-
# Готовим low-res вход для кодера ВСЕГДА под model_resolution
|
| 384 |
-
orig_high = fixed_samples # [B,C,H,W] в [-1,1]
|
| 385 |
-
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 386 |
-
# dtype как у модели
|
| 387 |
-
model_dtype = next(temp_vae.parameters()).dtype
|
| 388 |
-
orig_low = orig_low.to(dtype=model_dtype)
|
| 389 |
-
# encode/decode
|
| 390 |
-
# CHANGED: при валидации/сэмплах всегда используем mean (стабильно и детерминированно)
|
| 391 |
-
enc = temp_vae.encode(orig_low)
|
| 392 |
-
latents_mean = enc.latent_dist.mean
|
| 393 |
-
rec = temp_vae.decode(latents_mean).sample
|
| 394 |
-
|
| 395 |
-
# Приводим spatial размер рекона к high-res (downsample для асимметричных VAE)
|
| 396 |
-
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 397 |
-
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 398 |
-
|
| 399 |
-
# Сохраняем ПЕРВЫЙ семпл: real и decoded без номера шага в имени
|
| 400 |
-
first_real = _to_pil_uint8(orig_high[0])
|
| 401 |
-
first_dec = _to_pil_uint8(rec[0])
|
| 402 |
-
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
| 403 |
-
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
| 404 |
-
|
| 405 |
-
# Дополнительно сохраняем текущие реконструкции без номера шага (чтобы не плодить файлы — будут перезаписываться)
|
| 406 |
-
for i in range(rec.shape[0]):
|
| 407 |
-
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
| 408 |
-
|
| 409 |
-
# LPIPS на полном изображении (high-res) — для лога
|
| 410 |
-
lpips_scores = []
|
| 411 |
-
for i in range(rec.shape[0]):
|
| 412 |
-
orig_full = orig_high[i:i+1].to(torch.float32)
|
| 413 |
-
rec_full = rec[i:i+1].to(torch.float32)
|
| 414 |
-
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 415 |
-
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 416 |
-
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 417 |
-
lpips_scores.append(lpips_val)
|
| 418 |
-
avg_lpips = float(np.mean(lpips_scores))
|
| 419 |
-
|
| 420 |
-
if use_wandb and accelerator.is_main_process:
|
| 421 |
-
wandb.log({
|
| 422 |
-
"lpips_mean": avg_lpips,
|
| 423 |
-
}, step=step)
|
| 424 |
-
finally:
|
| 425 |
-
gc.collect()
|
| 426 |
-
torch.cuda.empty_cache()
|
| 427 |
-
|
| 428 |
-
if accelerator.is_main_process and save_model:
|
| 429 |
-
print("Генерация сэмплов до старта обучения...")
|
| 430 |
-
generate_and_save_samples(0)
|
| 431 |
-
|
| 432 |
-
accelerator.wait_for_everyone()
|
| 433 |
-
|
| 434 |
-
# --------------------------- Тренировка ---------------------------
|
| 435 |
-
|
| 436 |
-
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 437 |
-
global_step = 0
|
| 438 |
-
min_loss = float("inf")
|
| 439 |
-
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 440 |
-
|
| 441 |
-
for epoch in range(num_epochs):
|
| 442 |
-
vae.train()
|
| 443 |
-
batch_losses = []
|
| 444 |
-
batch_grads = []
|
| 445 |
-
# Доп. трекинг по отдельным лоссам
|
| 446 |
-
track_losses = {k: [] for k in loss_ratios.keys()}
|
| 447 |
-
for imgs in dataloader:
|
| 448 |
-
with accelerator.accumulate(vae):
|
| 449 |
-
# imgs: high-res tensor from dataloader ([-1,1]), move to device
|
| 450 |
-
imgs = imgs.to(accelerator.device)
|
| 451 |
-
|
| 452 |
-
# ВСЕГДА даунсемплим вход под model_resolution для кодера
|
| 453 |
-
if high_resolution != model_resolution:
|
| 454 |
-
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 455 |
-
else:
|
| 456 |
-
imgs_low = imgs
|
| 457 |
-
|
| 458 |
-
# ensure dtype matches model params to avoid float/half mismatch
|
| 459 |
-
model_dtype = next(vae.parameters()).dtype
|
| 460 |
-
imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low
|
| 461 |
-
|
| 462 |
-
# Encode/decode
|
| 463 |
-
enc = vae.encode(imgs_low_model)
|
| 464 |
-
|
| 465 |
-
# CHANGED: если тренируем всю модель — используем reparameterization sample()
|
| 466 |
-
# это важно для стохастичности и согласованности с KL.
|
| 467 |
-
latents = enc.latent_dist.sample() if full_training else enc.latent_dist.mean
|
| 468 |
-
|
| 469 |
-
rec = vae.decode(latents).sample # rec может быть увеличенным (асимметричный VAE)
|
| 470 |
-
|
| 471 |
-
# Приводим размер к high-res
|
| 472 |
-
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 473 |
-
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 474 |
-
|
| 475 |
-
# Лоссы считаем на high-res
|
| 476 |
-
rec_f32 = rec.to(torch.float32)
|
| 477 |
-
imgs_f32 = imgs.to(torch.float32)
|
| 478 |
-
|
| 479 |
-
# Отдельные лоссы (абсолютные значения)
|
| 480 |
-
abs_losses = {
|
| 481 |
-
"mae": F.l1_loss(rec_f32, imgs_f32),
|
| 482 |
-
"mse": F.mse_loss(rec_f32, imgs_f32),
|
| 483 |
-
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
| 484 |
-
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
| 485 |
-
}
|
| 486 |
-
|
| 487 |
-
# CHANGED: KL-loss добавляется ТОЛЬКО при полном обучении.
|
| 488 |
-
# KL(q(z|x) || N(0,1)) = -0.5 * sum(1 + logσ^2 - μ^2 - σ^2).
|
| 489 |
-
if full_training:
|
| 490 |
-
mean = enc.latent_dist.mean
|
| 491 |
-
logvar = enc.latent_dist.logvar
|
| 492 |
-
# стабильное усреднение по батчу и пространству
|
| 493 |
-
# СТАРОЕ (неправильное):
|
| 494 |
-
#kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
|
| 495 |
-
# НОВОЕ (правильное):
|
| 496 |
-
kl_per_sample = -0.5 * torch.sum(1 + logvar - mean.pow(2) - logvar.exp(), dim=[1, 2, 3])
|
| 497 |
-
kl = torch.mean(kl_per_sample)
|
| 498 |
-
abs_losses["kl"] = kl
|
| 499 |
-
else:
|
| 500 |
-
# ключ присутствует в ratios, но при partial-training его доля = 0 и он не влияет
|
| 501 |
-
abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)
|
| 502 |
-
|
| 503 |
-
# Total с медианными КОЭФФИЦИЕНТАМИ
|
| 504 |
-
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
| 505 |
-
|
| 506 |
-
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 507 |
-
print("NaN/Inf loss – stopping")
|
| 508 |
-
raise RuntimeError("NaN/Inf loss")
|
| 509 |
-
|
| 510 |
-
accelerator.backward(total_loss)
|
| 511 |
-
|
| 512 |
-
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 513 |
-
if accelerator.sync_gradients:
|
| 514 |
-
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 515 |
-
optimizer.step()
|
| 516 |
-
scheduler.step()
|
| 517 |
-
optimizer.zero_grad(set_to_none=True)
|
| 518 |
-
|
| 519 |
-
global_step += 1
|
| 520 |
-
progress.update(1)
|
| 521 |
-
|
| 522 |
-
# --- Логирование ---
|
| 523 |
-
if accelerator.is_main_process:
|
| 524 |
-
try:
|
| 525 |
-
current_lr = optimizer.param_groups[0]["lr"]
|
| 526 |
-
except Exception:
|
| 527 |
-
current_lr = scheduler.get_last_lr()[0]
|
| 528 |
-
|
| 529 |
-
batch_losses.append(total_loss.detach().item())
|
| 530 |
-
# CHANGED: корректно извлекаем scalar из разн. типов
|
| 531 |
-
if isinstance(grad_norm, torch.Tensor):
|
| 532 |
-
batch_grads.append(float(grad_norm.detach().cpu().item()))
|
| 533 |
-
else:
|
| 534 |
-
batch_grads.append(float(grad_norm))
|
| 535 |
-
|
| 536 |
-
for k, v in abs_losses.items():
|
| 537 |
-
track_losses[k].append(float(v.detach().item()))
|
| 538 |
-
|
| 539 |
-
if use_wandb and accelerator.sync_gradients:
|
| 540 |
-
log_dict = {
|
| 541 |
-
"total_loss": float(total_loss.detach().item()),
|
| 542 |
-
"learning_rate": current_lr,
|
| 543 |
-
"epoch": epoch,
|
| 544 |
-
"grad_norm": batch_grads[-1],
|
| 545 |
-
"mode/full_training": int(full_training), # CHANGED: для наглядности в логах
|
| 546 |
-
}
|
| 547 |
-
# добавляем отдельные лоссы
|
| 548 |
-
for k, v in abs_losses.items():
|
| 549 |
-
log_dict[f"loss_{k}"] = float(v.detach().item())
|
| 550 |
-
# логи коэффициентов и медиан
|
| 551 |
-
for k in coeffs:
|
| 552 |
-
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
| 553 |
-
log_dict[f"median_{k}"] = float(meds[k])
|
| 554 |
-
wandb.log(log_dict, step=global_step)
|
| 555 |
-
|
| 556 |
-
# периодические сэмплы и чекпоинты
|
| 557 |
-
if global_step > 0 and global_step % sample_interval == 0:
|
| 558 |
-
if accelerator.is_main_process:
|
| 559 |
-
generate_and_save_samples(global_step)
|
| 560 |
-
accelerator.wait_for_everyone()
|
| 561 |
-
|
| 562 |
-
# Средние по последним итерациям
|
| 563 |
-
n_micro = sample_interval * gradient_accumulation_steps
|
| 564 |
-
if len(batch_losses) >= n_micro:
|
| 565 |
-
avg_loss = float(np.mean(batch_losses[-n_micro:]))
|
| 566 |
-
else:
|
| 567 |
-
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 568 |
-
|
| 569 |
-
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 570 |
-
|
| 571 |
-
if accelerator.is_main_process:
|
| 572 |
-
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 573 |
-
if save_model and avg_loss < min_loss * save_barrier:
|
| 574 |
-
min_loss = avg_loss
|
| 575 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 576 |
-
if use_wandb:
|
| 577 |
-
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
| 578 |
-
|
| 579 |
-
if accelerator.is_main_process:
|
| 580 |
-
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 581 |
-
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 582 |
-
if use_wandb:
|
| 583 |
-
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 584 |
-
|
| 585 |
-
# --------------------------- Финальное сохранение ---------------------------
|
| 586 |
-
if accelerator.is_main_process:
|
| 587 |
-
print("Training finished – saving final model")
|
| 588 |
-
if save_model:
|
| 589 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 590 |
-
|
| 591 |
-
accelerator.free_memory()
|
| 592 |
-
if torch.distributed.is_initialized():
|
| 593 |
-
torch.distributed.destroy_process_group()
|
| 594 |
-
print("Готово!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_sdxl_vae_my.py
DELETED
|
@@ -1,507 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
import os
|
| 3 |
-
import math
|
| 4 |
-
import re
|
| 5 |
-
import torch
|
| 6 |
-
import numpy as np
|
| 7 |
-
import random
|
| 8 |
-
import gc
|
| 9 |
-
from datetime import datetime
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
import torchvision.transforms as transforms
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
-
from torch.utils.data import DataLoader, Dataset
|
| 15 |
-
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
-
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
-
from accelerate import Accelerator
|
| 18 |
-
from PIL import Image, UnidentifiedImageError
|
| 19 |
-
from tqdm import tqdm
|
| 20 |
-
import bitsandbytes as bnb
|
| 21 |
-
import wandb
|
| 22 |
-
import lpips # pip install lpips
|
| 23 |
-
|
| 24 |
-
# --------------------------- Параметры ---------------------------
|
| 25 |
-
ds_path = "/workspace/png"
|
| 26 |
-
project = "asymmetric_vae"
|
| 27 |
-
batch_size = 2
|
| 28 |
-
base_learning_rate = 1e-6
|
| 29 |
-
min_learning_rate = 8e-7
|
| 30 |
-
num_epochs = 8
|
| 31 |
-
sample_interval_share = 10
|
| 32 |
-
use_wandb = True
|
| 33 |
-
save_model = True
|
| 34 |
-
use_decay = True
|
| 35 |
-
asymmetric = True
|
| 36 |
-
optimizer_type = "adam8bit"
|
| 37 |
-
dtype = torch.float32
|
| 38 |
-
# model_resolution — то, что подавается в VAE (низкое разрешение)
|
| 39 |
-
model_resolution = 512 # бывший `resolution`
|
| 40 |
-
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
|
| 41 |
-
high_resolution = 1024
|
| 42 |
-
limit = 0
|
| 43 |
-
save_barrier = 1.03
|
| 44 |
-
warmup_percent = 0.01
|
| 45 |
-
percentile_clipping = 95
|
| 46 |
-
beta2 = 0.97
|
| 47 |
-
eps = 1e-6
|
| 48 |
-
clip_grad_norm = 1.0
|
| 49 |
-
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
|
| 50 |
-
gradient_accumulation_steps = 8
|
| 51 |
-
generated_folder = "samples"
|
| 52 |
-
save_as = "asymmetric_vae_new"
|
| 53 |
-
perceptual_loss_weight = 0.03 # начальное значение веса (будет перезаписываться каждый шаг)
|
| 54 |
-
num_workers = 0
|
| 55 |
-
device = None # accelerator задаст устройство
|
| 56 |
-
|
| 57 |
-
# --- Параметры динамической нормализации LPIPS
|
| 58 |
-
lpips_ratio = 0.9 #percent lpips in loss
|
| 59 |
-
|
| 60 |
-
min_perceptual_weight = 0.1 # минимальный предел веса
|
| 61 |
-
max_perceptual_weight = 99 # максимальный предел веса (защита от взрывов)
|
| 62 |
-
|
| 63 |
-
# --------------------------- параметры препроцессинга ---------------------------
|
| 64 |
-
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1024
|
| 65 |
-
|
| 66 |
-
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 67 |
-
|
| 68 |
-
accelerator = Accelerator(
|
| 69 |
-
mixed_precision=mixed_precision,
|
| 70 |
-
gradient_accumulation_steps=gradient_accumulation_steps
|
| 71 |
-
)
|
| 72 |
-
device = accelerator.device
|
| 73 |
-
|
| 74 |
-
# reproducibility
|
| 75 |
-
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 76 |
-
torch.manual_seed(seed)
|
| 77 |
-
np.random.seed(seed)
|
| 78 |
-
random.seed(seed)
|
| 79 |
-
|
| 80 |
-
torch.backends.cudnn.benchmark = True
|
| 81 |
-
|
| 82 |
-
# --------------------------- WandB ---------------------------
|
| 83 |
-
if use_wandb and accelerator.is_main_process:
|
| 84 |
-
wandb.init(project=project, config={
|
| 85 |
-
"batch_size": batch_size,
|
| 86 |
-
"base_learning_rate": base_learning_rate,
|
| 87 |
-
"num_epochs": num_epochs,
|
| 88 |
-
"optimizer_type": optimizer_type,
|
| 89 |
-
"model_resolution": model_resolution,
|
| 90 |
-
"high_resolution": high_resolution,
|
| 91 |
-
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 92 |
-
})
|
| 93 |
-
|
| 94 |
-
# --------------------------- VAE ---------------------------
|
| 95 |
-
if model_resolution==high_resolution and not asymmetric:
|
| 96 |
-
vae = AutoencoderKL.from_pretrained(project).to(dtype)
|
| 97 |
-
else:
|
| 98 |
-
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
|
| 99 |
-
|
| 100 |
-
# >>> CHANGED: заморозка всех параметров, затем разморозка mid_block + up_blocks[-2:]
|
| 101 |
-
for p in vae.parameters():
|
| 102 |
-
p.requires_grad = False
|
| 103 |
-
|
| 104 |
-
decoder = getattr(vae, "decoder", None)
|
| 105 |
-
if decoder is None:
|
| 106 |
-
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
|
| 107 |
-
|
| 108 |
-
unfrozen_param_names = []
|
| 109 |
-
|
| 110 |
-
if not hasattr(decoder, "up_blocks"):
|
| 111 |
-
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
|
| 112 |
-
|
| 113 |
-
# >>> CHANGED: размораживаем последние 2 up_blocks (как просил) и mid_block
|
| 114 |
-
n_up = len(decoder.up_blocks)
|
| 115 |
-
start_idx = 0 #max(0, n_up - 2) # all
|
| 116 |
-
for idx in range(start_idx, n_up):
|
| 117 |
-
block = decoder.up_blocks[idx]
|
| 118 |
-
for name, p in block.named_parameters():
|
| 119 |
-
p.requires_grad = True
|
| 120 |
-
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
|
| 121 |
-
|
| 122 |
-
if hasattr(decoder, "mid_block"):
|
| 123 |
-
for name, p in decoder.mid_block.named_parameters():
|
| 124 |
-
p.requires_grad = True
|
| 125 |
-
unfrozen_param_names.append(f"decoder.mid_block.{name}")
|
| 126 |
-
else:
|
| 127 |
-
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
|
| 128 |
-
|
| 129 |
-
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 130 |
-
for nm in unfrozen_param_names[:200]:
|
| 131 |
-
print(" ", nm)
|
| 132 |
-
|
| 133 |
-
# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
|
| 134 |
-
trainable_module = vae.decoder
|
| 135 |
-
|
| 136 |
-
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
|
| 137 |
-
class PngFolderDataset(Dataset):
|
| 138 |
-
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 139 |
-
# >>> CHANGED: default resolution argument is high-resolution (1024)
|
| 140 |
-
self.root_dir = root_dir
|
| 141 |
-
self.resolution = resolution
|
| 142 |
-
self.paths = []
|
| 143 |
-
# collect png files recursively
|
| 144 |
-
for root, _, files in os.walk(root_dir):
|
| 145 |
-
for fname in files:
|
| 146 |
-
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 147 |
-
self.paths.append(os.path.join(root, fname))
|
| 148 |
-
# optional limit
|
| 149 |
-
if limit:
|
| 150 |
-
self.paths = self.paths[:limit]
|
| 151 |
-
# verify images and keep only valid ones
|
| 152 |
-
valid = []
|
| 153 |
-
for p in self.paths:
|
| 154 |
-
try:
|
| 155 |
-
with Image.open(p) as im:
|
| 156 |
-
im.verify() # fast check for truncated/corrupted images
|
| 157 |
-
valid.append(p)
|
| 158 |
-
except (OSError, UnidentifiedImageError):
|
| 159 |
-
# skip corrupted image
|
| 160 |
-
continue
|
| 161 |
-
self.paths = valid
|
| 162 |
-
if len(self.paths) == 0:
|
| 163 |
-
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 164 |
-
# final shuffle for randomness
|
| 165 |
-
random.shuffle(self.paths)
|
| 166 |
-
|
| 167 |
-
def __len__(self):
|
| 168 |
-
return len(self.paths)
|
| 169 |
-
|
| 170 |
-
def __getitem__(self, idx):
|
| 171 |
-
p = self.paths[idx % len(self.paths)]
|
| 172 |
-
# open and convert to RGB; ensure file is closed promptly
|
| 173 |
-
with Image.open(p) as img:
|
| 174 |
-
img = img.convert("RGB")
|
| 175 |
-
# return PIL image (collate will transform)
|
| 176 |
-
if not resize_long_side or resize_long_side <= 0:
|
| 177 |
-
return img
|
| 178 |
-
w, h = img.size
|
| 179 |
-
long = max(w, h)
|
| 180 |
-
if long <= resize_long_side:
|
| 181 |
-
return img
|
| 182 |
-
scale = resize_long_side / float(long)
|
| 183 |
-
new_w = int(round(w * scale))
|
| 184 |
-
new_h = int(round(h * scale))
|
| 185 |
-
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 186 |
-
|
| 187 |
-
# --------------------------- Датасет и трансформы ---------------------------
|
| 188 |
-
|
| 189 |
-
def random_crop(img, sz):
|
| 190 |
-
w, h = img.size
|
| 191 |
-
if w < sz or h < sz:
|
| 192 |
-
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 193 |
-
x = random.randint(0, max(1, img.width - sz))
|
| 194 |
-
y = random.randint(0, max(1, img.height - sz))
|
| 195 |
-
return img.crop((x, y, x + sz, y + sz))
|
| 196 |
-
|
| 197 |
-
tfm = transforms.Compose([
|
| 198 |
-
transforms.ToTensor(),
|
| 199 |
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 200 |
-
])
|
| 201 |
-
|
| 202 |
-
# build dataset using high_resolution crops
|
| 203 |
-
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit) # >>> CHANGED
|
| 204 |
-
if len(dataset) < batch_size:
|
| 205 |
-
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 206 |
-
|
| 207 |
-
# collate_fn кропит до high_resolution
|
| 208 |
-
def collate_fn(batch):
|
| 209 |
-
imgs = []
|
| 210 |
-
for img in batch: # img is PIL.Image
|
| 211 |
-
img = random_crop(img, high_resolution) # >>> CHANGED: crop high-res
|
| 212 |
-
imgs.append(tfm(img))
|
| 213 |
-
return torch.stack(imgs)
|
| 214 |
-
|
| 215 |
-
dataloader = DataLoader(
|
| 216 |
-
dataset,
|
| 217 |
-
batch_size=batch_size,
|
| 218 |
-
shuffle=True,
|
| 219 |
-
collate_fn=collate_fn,
|
| 220 |
-
num_workers=num_workers,
|
| 221 |
-
pin_memory=True,
|
| 222 |
-
drop_last=True
|
| 223 |
-
)
|
| 224 |
-
|
| 225 |
-
# --------------------------- Оптимизатор ---------------------------
|
| 226 |
-
def get_param_groups(module, weight_decay=0.001):
|
| 227 |
-
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 228 |
-
decay_params = []
|
| 229 |
-
no_decay_params = []
|
| 230 |
-
for n, p in module.named_parameters():
|
| 231 |
-
if not p.requires_grad:
|
| 232 |
-
continue
|
| 233 |
-
if any(nd in n for nd in no_decay):
|
| 234 |
-
no_decay_params.append(p)
|
| 235 |
-
else:
|
| 236 |
-
decay_params.append(p)
|
| 237 |
-
return [
|
| 238 |
-
{"params": decay_params, "weight_decay": weight_decay},
|
| 239 |
-
{"params": no_decay_params, "weight_decay": 0.0},
|
| 240 |
-
]
|
| 241 |
-
|
| 242 |
-
def create_optimizer(name, param_groups):
|
| 243 |
-
if name == "adam8bit":
|
| 244 |
-
return bnb.optim.AdamW8bit(
|
| 245 |
-
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
|
| 246 |
-
)
|
| 247 |
-
raise ValueError(name)
|
| 248 |
-
|
| 249 |
-
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
|
| 250 |
-
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 251 |
-
|
| 252 |
-
# --------------------------- Подготовка Accelerate (вместе) ---------------------------
|
| 253 |
-
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
|
| 254 |
-
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # число optimizer.step() за эпоху
|
| 255 |
-
total_steps = steps_per_epoch * num_epochs
|
| 256 |
-
|
| 257 |
-
def lr_lambda(step):
|
| 258 |
-
if not use_decay:
|
| 259 |
-
return 1.0
|
| 260 |
-
x = float(step) / float(max(1, total_steps))
|
| 261 |
-
warmup = float(warmup_percent)
|
| 262 |
-
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 263 |
-
if x < warmup:
|
| 264 |
-
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 265 |
-
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 266 |
-
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 267 |
-
|
| 268 |
-
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 269 |
-
|
| 270 |
-
# Подготовка
|
| 271 |
-
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 272 |
-
|
| 273 |
-
trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]
|
| 274 |
-
|
| 275 |
-
# --------------------------- Сэмплы и LPIPS helper ---------------------------
|
| 276 |
-
@torch.no_grad()
|
| 277 |
-
def get_fixed_samples(n=3):
|
| 278 |
-
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 279 |
-
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
|
| 280 |
-
tensors = []
|
| 281 |
-
for img in pil_imgs:
|
| 282 |
-
img = random_crop(img, high_resolution) # >>> CHANGED: high-res fixed samples
|
| 283 |
-
tensors.append(tfm(img))
|
| 284 |
-
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 285 |
-
|
| 286 |
-
fixed_samples = get_fixed_samples()
|
| 287 |
-
|
| 288 |
-
_lpips_net = None
|
| 289 |
-
def _get_lpips():
|
| 290 |
-
global _lpips_net
|
| 291 |
-
if _lpips_net is None:
|
| 292 |
-
# lpips uses its internal vgg, but we use it as-is.
|
| 293 |
-
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 294 |
-
return _lpips_net
|
| 295 |
-
|
| 296 |
-
@torch.no_grad()
|
| 297 |
-
def generate_and_save_samples(step=None):
|
| 298 |
-
try:
|
| 299 |
-
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 300 |
-
lpips_net = _get_lpips()
|
| 301 |
-
with torch.no_grad():
|
| 302 |
-
# >>> CHANGED: use high-res fixed_samples, downsample to model_res for encoding
|
| 303 |
-
orig_high = fixed_samples # already on device
|
| 304 |
-
# make low-res input for model
|
| 305 |
-
if model_resolution==high_resolution:
|
| 306 |
-
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 307 |
-
else:
|
| 308 |
-
orig_low =orig_high
|
| 309 |
-
|
| 310 |
-
# ensure dtype matches model params to avoid dtype mismatch
|
| 311 |
-
model_dtype = next(temp_vae.parameters()).dtype
|
| 312 |
-
orig_low = orig_low.to(dtype=model_dtype)
|
| 313 |
-
|
| 314 |
-
latent_dist = temp_vae.encode(orig_low).latent_dist
|
| 315 |
-
latents = latent_dist.mean
|
| 316 |
-
rec = temp_vae.decode(latents).sample # expected to be upscaled to high_res
|
| 317 |
-
|
| 318 |
-
# make sure rec is float32 in range [0,1] for saving
|
| 319 |
-
# if rec spatial size differs from orig_high, resize rec to orig_high
|
| 320 |
-
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 321 |
-
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 322 |
-
|
| 323 |
-
rec_img = ((rec.float() / 2.0 + 0.5).clamp(0, 1) * 255).cpu().numpy()
|
| 324 |
-
for i in range(rec_img.shape[0]):
|
| 325 |
-
arr = rec_img[i].transpose(1, 2, 0).astype(np.uint8)
|
| 326 |
-
Image.fromarray(arr).save(f"{generated_folder}/sample_{step if step is not None else 'init'}_{i}.jpg", quality=95)
|
| 327 |
-
|
| 328 |
-
# LPIPS на полном изображении (high-res)
|
| 329 |
-
lpips_scores = []
|
| 330 |
-
for i in range(rec.shape[0]):
|
| 331 |
-
orig_full = orig_high[i:i+1] # [B, C, H, W], in [-1,1]
|
| 332 |
-
rec_full = rec[i:i+1]
|
| 333 |
-
# ensure same spatial size/dtype
|
| 334 |
-
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 335 |
-
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 336 |
-
rec_full = rec_full.to(torch.float32)
|
| 337 |
-
orig_full = orig_full.to(torch.float32)
|
| 338 |
-
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 339 |
-
lpips_scores.append(lpips_val)
|
| 340 |
-
avg_lpips = float(np.mean(lpips_scores))
|
| 341 |
-
if use_wandb and accelerator.is_main_process:
|
| 342 |
-
wandb.log({
|
| 343 |
-
"generated_images": [wandb.Image(Image.fromarray(rec_img[i].transpose(1,2,0).astype(np.uint8))) for i in range(rec_img.shape[0])],
|
| 344 |
-
"lpips_mean": avg_lpips
|
| 345 |
-
}, step=step)
|
| 346 |
-
finally:
|
| 347 |
-
gc.collect()
|
| 348 |
-
torch.cuda.empty_cache()
|
| 349 |
-
|
| 350 |
-
if accelerator.is_main_process and save_model:
|
| 351 |
-
print("Генерация сэмплов до старта обучения...")
|
| 352 |
-
generate_and_save_samples(0)
|
| 353 |
-
|
| 354 |
-
accelerator.wait_for_everyone()
|
| 355 |
-
|
| 356 |
-
# --------------------------- Тренировка ---------------------------
|
| 357 |
-
|
| 358 |
-
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 359 |
-
global_step = 0
|
| 360 |
-
min_loss = float("inf")
|
| 361 |
-
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 362 |
-
|
| 363 |
-
for epoch in range(num_epochs):
|
| 364 |
-
vae.train()
|
| 365 |
-
batch_losses = []
|
| 366 |
-
batch_losses_mae = []
|
| 367 |
-
batch_losses_lpips = []
|
| 368 |
-
batch_losses_perc = []
|
| 369 |
-
batch_grads = []
|
| 370 |
-
for imgs in dataloader:
|
| 371 |
-
with accelerator.accumulate(vae):
|
| 372 |
-
# imgs: high-res tensor from dataloader ([-1,1]), move to device
|
| 373 |
-
imgs = imgs.to(accelerator.device)
|
| 374 |
-
|
| 375 |
-
# >>> CHANGED: create low-res input for model by downsampling high-res crop
|
| 376 |
-
if model_resolution==high_resolution:
|
| 377 |
-
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 378 |
-
else:
|
| 379 |
-
imgs_low = imgs
|
| 380 |
-
|
| 381 |
-
# ensure dtype matches model params to avoid float/half mismatch
|
| 382 |
-
model_dtype = next(vae.parameters()).dtype
|
| 383 |
-
if imgs_low.dtype != model_dtype:
|
| 384 |
-
imgs_low_model = imgs_low.to(dtype=model_dtype)
|
| 385 |
-
else:
|
| 386 |
-
imgs_low_model = imgs_low
|
| 387 |
-
|
| 388 |
-
# Encode/decode on low-res input
|
| 389 |
-
latent_dist = vae.encode(imgs_low_model).latent_dist
|
| 390 |
-
latents = latent_dist.mean
|
| 391 |
-
rec = vae.decode(latents).sample # rec is expected to be high-res (upscaled)
|
| 392 |
-
|
| 393 |
-
# If rec isn't the same spatial size as original high-res input, resize to high-res
|
| 394 |
-
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 395 |
-
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 396 |
-
|
| 397 |
-
# Now compute losses **on high-res** (rec vs imgs)
|
| 398 |
-
rec_f32 = rec.to(torch.float32)
|
| 399 |
-
imgs_f32 = imgs.to(torch.float32)
|
| 400 |
-
|
| 401 |
-
# MAE
|
| 402 |
-
mae_loss = F.l1_loss(rec_f32, imgs_f32)
|
| 403 |
-
|
| 404 |
-
# LPIPS (ensure float32)
|
| 405 |
-
lpips_loss = _get_lpips()(rec_f32, imgs_f32).mean()
|
| 406 |
-
|
| 407 |
-
# dynamic perceptual weighting (same as before)
|
| 408 |
-
if float(mae_loss.detach().cpu().item()) > 1e-12:
|
| 409 |
-
desired_multiplier = lpips_ratio / max(1.0 - lpips_ratio, 1e-12)
|
| 410 |
-
new_weight = (mae_loss.item() / float(lpips_loss.detach().cpu().item())) * desired_multiplier
|
| 411 |
-
else:
|
| 412 |
-
new_weight = perceptual_loss_weight
|
| 413 |
-
|
| 414 |
-
perceptual_loss_weight = float(np.clip(new_weight, min_perceptual_weight, max_perceptual_weight))
|
| 415 |
-
batch_losses_perc.append(perceptual_loss_weight)
|
| 416 |
-
if len(batch_losses_perc) >= sample_interval:
|
| 417 |
-
avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
|
| 418 |
-
else:
|
| 419 |
-
avg_perc = float(np.mean(batch_losses_perc[-sample_interval:]))
|
| 420 |
-
|
| 421 |
-
total_loss = mae_loss + avg_perc * lpips_loss
|
| 422 |
-
|
| 423 |
-
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 424 |
-
print("NaN/Inf loss – stopping")
|
| 425 |
-
raise RuntimeError("NaN/Inf loss")
|
| 426 |
-
|
| 427 |
-
accelerator.backward(total_loss)
|
| 428 |
-
|
| 429 |
-
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 430 |
-
if accelerator.sync_gradients:
|
| 431 |
-
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 432 |
-
optimizer.step()
|
| 433 |
-
scheduler.step()
|
| 434 |
-
optimizer.zero_grad(set_to_none=True)
|
| 435 |
-
|
| 436 |
-
global_step += 1
|
| 437 |
-
progress.update(1)
|
| 438 |
-
|
| 439 |
-
# --- Логирование ---
|
| 440 |
-
if accelerator.is_main_process:
|
| 441 |
-
try:
|
| 442 |
-
current_lr = optimizer.param_groups[0]["lr"]
|
| 443 |
-
except Exception:
|
| 444 |
-
current_lr = scheduler.get_last_lr()[0]
|
| 445 |
-
|
| 446 |
-
batch_losses.append(total_loss.detach().item())
|
| 447 |
-
batch_losses_mae.append(mae_loss.detach().item())
|
| 448 |
-
batch_losses_lpips.append(lpips_loss.detach().item())
|
| 449 |
-
batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
|
| 450 |
-
|
| 451 |
-
if use_wandb and accelerator.sync_gradients:
|
| 452 |
-
wandb.log({
|
| 453 |
-
"mae_loss": mae_loss.detach().item(),
|
| 454 |
-
"lpips_loss": lpips_loss.detach().item(),
|
| 455 |
-
"perceptual_loss_weight": avg_perc,
|
| 456 |
-
"total_loss": total_loss.detach().item(),
|
| 457 |
-
"learning_rate": current_lr,
|
| 458 |
-
"epoch": epoch,
|
| 459 |
-
"grad_norm": batch_grads[-1],
|
| 460 |
-
}, step=global_step)
|
| 461 |
-
|
| 462 |
-
# периодические сэмплы и чекпоинты
|
| 463 |
-
if global_step > 0 and global_step % sample_interval == 0:
|
| 464 |
-
# делаем генерацию и лог только в main process (генерация использует fixed_samples high-res)
|
| 465 |
-
if accelerator.is_main_process:
|
| 466 |
-
generate_and_save_samples(global_step)
|
| 467 |
-
|
| 468 |
-
accelerator.wait_for_everyone()
|
| 469 |
-
|
| 470 |
-
# сколько микро-батчей нужно взять для усреднения
|
| 471 |
-
n_micro = sample_interval * gradient_accumulation_steps
|
| 472 |
-
# защищаем от выхода за пределы
|
| 473 |
-
if len(batch_losses) >= n_micro:
|
| 474 |
-
avg_loss = float(np.mean(batch_losses[-n_micro:]))
|
| 475 |
-
avg_loss_mae = float(np.mean(batch_losses_mae[-n_micro:]))
|
| 476 |
-
avg_loss_lpips = float(np.mean(batch_losses_lpips[-n_micro:]))
|
| 477 |
-
else:
|
| 478 |
-
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 479 |
-
avg_loss_mae = float(np.mean(batch_losses_mae)) if batch_losses_mae else float("nan")
|
| 480 |
-
avg_loss_lpips = float(np.mean(batch_losses_lpips)) if batch_losses_lpips else float("nan")
|
| 481 |
-
|
| 482 |
-
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 483 |
-
|
| 484 |
-
if accelerator.is_main_process:
|
| 485 |
-
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 486 |
-
if save_model and avg_loss < min_loss * save_barrier:
|
| 487 |
-
min_loss = avg_loss
|
| 488 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 489 |
-
if use_wandb:
|
| 490 |
-
wandb.log({"interm_loss": avg_loss,"interm_loss_mae": avg_loss_mae,"interm_loss_lpips": avg_loss_lpips, "interm_grad": avg_grad}, step=global_step)
|
| 491 |
-
|
| 492 |
-
if accelerator.is_main_process:
|
| 493 |
-
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 494 |
-
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 495 |
-
if use_wandb:
|
| 496 |
-
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 497 |
-
|
| 498 |
-
# --------------------------- Финальное сохранение ---------------------------
|
| 499 |
-
if accelerator.is_main_process:
|
| 500 |
-
print("Training finished – saving final model")
|
| 501 |
-
if save_model:
|
| 502 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 503 |
-
|
| 504 |
-
accelerator.free_memory()
|
| 505 |
-
if torch.distributed.is_initialized():
|
| 506 |
-
torch.distributed.destroy_process_group()
|
| 507 |
-
print("Готово!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_sdxl_vae_qwen.py
DELETED
|
@@ -1,526 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
import os
|
| 3 |
-
import math
|
| 4 |
-
import re
|
| 5 |
-
import torch
|
| 6 |
-
import numpy as np
|
| 7 |
-
import random
|
| 8 |
-
import gc
|
| 9 |
-
from datetime import datetime
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
import torchvision.transforms as transforms
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
-
from torch.utils.data import DataLoader, Dataset
|
| 15 |
-
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
-
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
-
# QWEN: импорт класса
|
| 18 |
-
from diffusers import AutoencoderKLQwenImage
|
| 19 |
-
|
| 20 |
-
from accelerate import Accelerator
|
| 21 |
-
from PIL import Image, UnidentifiedImageError
|
| 22 |
-
from tqdm import tqdm
|
| 23 |
-
import bitsandbytes as bnb
|
| 24 |
-
import wandb
|
| 25 |
-
import lpips # pip install lpips
|
| 26 |
-
from collections import deque
|
| 27 |
-
|
| 28 |
-
# --------------------------- Параметры ---------------------------
|
| 29 |
-
ds_path = "/workspace/png"
|
| 30 |
-
project = "qwen_vae"
|
| 31 |
-
batch_size = 3
|
| 32 |
-
base_learning_rate = 5e-5
|
| 33 |
-
min_learning_rate = 9e-7
|
| 34 |
-
num_epochs = 16
|
| 35 |
-
sample_interval_share = 10
|
| 36 |
-
use_wandb = True
|
| 37 |
-
save_model = True
|
| 38 |
-
use_decay = True
|
| 39 |
-
optimizer_type = "adam8bit"
|
| 40 |
-
dtype = torch.float32
|
| 41 |
-
|
| 42 |
-
model_resolution = 512
|
| 43 |
-
high_resolution = 512
|
| 44 |
-
limit = 0
|
| 45 |
-
save_barrier = 1.03
|
| 46 |
-
warmup_percent = 0.01
|
| 47 |
-
percentile_clipping = 95
|
| 48 |
-
beta2 = 0.97
|
| 49 |
-
eps = 1e-6
|
| 50 |
-
clip_grad_norm = 1.0
|
| 51 |
-
mixed_precision = "no"
|
| 52 |
-
gradient_accumulation_steps = 5
|
| 53 |
-
generated_folder = "samples"
|
| 54 |
-
save_as = "wen_vae_nightly"
|
| 55 |
-
num_workers = 0
|
| 56 |
-
device = None
|
| 57 |
-
|
| 58 |
-
# --- Режимы обучения ---
|
| 59 |
-
# QWEN: учим только декодер
|
| 60 |
-
train_decoder_only = True
|
| 61 |
-
full_training = False # если True — учим весь VAE и добавляем KL (ниже)
|
| 62 |
-
kl_ratio = 0.05
|
| 63 |
-
|
| 64 |
-
# Доли лоссов
|
| 65 |
-
loss_ratios = {
|
| 66 |
-
"lpips": 0.80,
|
| 67 |
-
"edge": 0.05,
|
| 68 |
-
"mse": 0.10,
|
| 69 |
-
"mae": 0.05,
|
| 70 |
-
"kl": 0.00, # активируем при full_training=True
|
| 71 |
-
}
|
| 72 |
-
median_coeff_steps = 256
|
| 73 |
-
|
| 74 |
-
resize_long_side = 1280 # ресайз длинной стороны исходных картинок
|
| 75 |
-
|
| 76 |
-
# QWEN: конфиг загрузки модели
|
| 77 |
-
vae_kind = "qwen" # "qwen" или "kl" (обычный)
|
| 78 |
-
vae_model_id = "Qwen/Qwen-Image"
|
| 79 |
-
vae_subfolder = "vae"
|
| 80 |
-
|
| 81 |
-
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 82 |
-
|
| 83 |
-
accelerator = Accelerator(
|
| 84 |
-
mixed_precision=mixed_precision,
|
| 85 |
-
gradient_accumulation_steps=gradient_accumulation_steps
|
| 86 |
-
)
|
| 87 |
-
device = accelerator.device
|
| 88 |
-
|
| 89 |
-
# reproducibility
|
| 90 |
-
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 91 |
-
torch.manual_seed(seed); np.random.seed(seed); random.seed(seed)
|
| 92 |
-
torch.backends.cudnn.benchmark = False
|
| 93 |
-
|
| 94 |
-
# --------------------------- WandB ---------------------------
|
| 95 |
-
if use_wandb and accelerator.is_main_process:
|
| 96 |
-
wandb.init(project=project, config={
|
| 97 |
-
"batch_size": batch_size,
|
| 98 |
-
"base_learning_rate": base_learning_rate,
|
| 99 |
-
"num_epochs": num_epochs,
|
| 100 |
-
"optimizer_type": optimizer_type,
|
| 101 |
-
"model_resolution": model_resolution,
|
| 102 |
-
"high_resolution": high_resolution,
|
| 103 |
-
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 104 |
-
"train_decoder_only": train_decoder_only,
|
| 105 |
-
"full_training": full_training,
|
| 106 |
-
"kl_ratio": kl_ratio,
|
| 107 |
-
"vae_kind": vae_kind,
|
| 108 |
-
"vae_model_id": vae_model_id,
|
| 109 |
-
})
|
| 110 |
-
|
| 111 |
-
# --------------------------- VAE ---------------------------
|
| 112 |
-
def is_qwen_vae(vae) -> bool:
|
| 113 |
-
return isinstance(vae, AutoencoderKLQwenImage) or ("Qwen" in vae.__class__.__name__)
|
| 114 |
-
|
| 115 |
-
# загрузка
|
| 116 |
-
if vae_kind == "qwen":
|
| 117 |
-
vae = AutoencoderKLQwenImage.from_pretrained(vae_model_id, subfolder=vae_subfolder)
|
| 118 |
-
else:
|
| 119 |
-
# старое поведение (пример)
|
| 120 |
-
if model_resolution==high_resolution:
|
| 121 |
-
vae = AutoencoderKL.from_pretrained(project)
|
| 122 |
-
else:
|
| 123 |
-
vae = AsymmetricAutoencoderKL.from_pretrained(project)
|
| 124 |
-
|
| 125 |
-
vae = vae.to(dtype)
|
| 126 |
-
|
| 127 |
-
# torch.compile (опционально)
|
| 128 |
-
if hasattr(torch, "compile"):
|
| 129 |
-
try:
|
| 130 |
-
vae = torch.compile(vae)
|
| 131 |
-
except Exception as e:
|
| 132 |
-
print(f"[WARN] torch.compile failed: {e}")
|
| 133 |
-
|
| 134 |
-
# --------------------------- Freeze/Unfreeze ---------------------------
|
| 135 |
-
for p in vae.parameters():
|
| 136 |
-
p.requires_grad = False
|
| 137 |
-
|
| 138 |
-
unfrozen_param_names = []
|
| 139 |
-
|
| 140 |
-
if full_training and not train_decoder_only:
|
| 141 |
-
# учим всю модель
|
| 142 |
-
for name, p in vae.named_parameters():
|
| 143 |
-
p.requires_grad = True
|
| 144 |
-
unfrozen_param_names.append(name)
|
| 145 |
-
loss_ratios["kl"] = float(kl_ratio)
|
| 146 |
-
trainable_module = vae
|
| 147 |
-
else:
|
| 148 |
-
# QWEN: учим только декодер (и post_quant_conv — часть декодерного тракта)
|
| 149 |
-
# универсально: всё, что начинается с "decoder." или "post_quant_conv"
|
| 150 |
-
for name, p in vae.named_parameters():
|
| 151 |
-
if name.startswith("decoder.") or name.startswith("post_quant_conv"):
|
| 152 |
-
p.requires_grad = True
|
| 153 |
-
unfrozen_param_names.append(name)
|
| 154 |
-
trainable_module = vae.decoder if hasattr(vae, "decoder") else vae
|
| 155 |
-
|
| 156 |
-
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 157 |
-
for nm in unfrozen_param_names[:200]:
|
| 158 |
-
print(" ", nm)
|
| 159 |
-
|
| 160 |
-
# --------------------------- Датасет ---------------------------
|
| 161 |
-
class PngFolderDataset(Dataset):
|
| 162 |
-
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 163 |
-
self.root_dir = root_dir
|
| 164 |
-
self.resolution = resolution
|
| 165 |
-
self.paths = []
|
| 166 |
-
for root, _, files in os.walk(root_dir):
|
| 167 |
-
for fname in files:
|
| 168 |
-
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 169 |
-
self.paths.append(os.path.join(root, fname))
|
| 170 |
-
if limit:
|
| 171 |
-
self.paths = self.paths[:limit]
|
| 172 |
-
valid = []
|
| 173 |
-
for p in self.paths:
|
| 174 |
-
try:
|
| 175 |
-
with Image.open(p) as im:
|
| 176 |
-
im.verify()
|
| 177 |
-
valid.append(p)
|
| 178 |
-
except (OSError, UnidentifiedImageError):
|
| 179 |
-
continue
|
| 180 |
-
self.paths = valid
|
| 181 |
-
if len(self.paths) == 0:
|
| 182 |
-
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 183 |
-
random.shuffle(self.paths)
|
| 184 |
-
|
| 185 |
-
def __len__(self):
|
| 186 |
-
return len(self.paths)
|
| 187 |
-
|
| 188 |
-
def __getitem__(self, idx):
|
| 189 |
-
p = self.paths[idx % len(self.paths)]
|
| 190 |
-
with Image.open(p) as img:
|
| 191 |
-
img = img.convert("RGB")
|
| 192 |
-
if not resize_long_side or resize_long_side <= 0:
|
| 193 |
-
return img
|
| 194 |
-
w, h = img.size
|
| 195 |
-
long = max(w, h)
|
| 196 |
-
if long <= resize_long_side:
|
| 197 |
-
return img
|
| 198 |
-
scale = resize_long_side / float(long)
|
| 199 |
-
new_w = int(round(w * scale))
|
| 200 |
-
new_h = int(round(h * scale))
|
| 201 |
-
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 202 |
-
|
| 203 |
-
def random_crop(img, sz):
|
| 204 |
-
w, h = img.size
|
| 205 |
-
if w < sz or h < sz:
|
| 206 |
-
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 207 |
-
x = random.randint(0, max(1, img.width - sz))
|
| 208 |
-
y = random.randint(0, max(1, img.height - sz))
|
| 209 |
-
return img.crop((x, y, x + sz, y + sz))
|
| 210 |
-
|
| 211 |
-
tfm = transforms.Compose([
|
| 212 |
-
transforms.ToTensor(),
|
| 213 |
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 214 |
-
])
|
| 215 |
-
|
| 216 |
-
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
| 217 |
-
if len(dataset) < batch_size:
|
| 218 |
-
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 219 |
-
|
| 220 |
-
def collate_fn(batch):
|
| 221 |
-
imgs = []
|
| 222 |
-
for img in batch:
|
| 223 |
-
img = random_crop(img, high_resolution)
|
| 224 |
-
imgs.append(tfm(img))
|
| 225 |
-
return torch.stack(imgs)
|
| 226 |
-
|
| 227 |
-
dataloader = DataLoader(
|
| 228 |
-
dataset,
|
| 229 |
-
batch_size=batch_size,
|
| 230 |
-
shuffle=True,
|
| 231 |
-
collate_fn=collate_fn,
|
| 232 |
-
num_workers=num_workers,
|
| 233 |
-
pin_memory=True,
|
| 234 |
-
drop_last=True
|
| 235 |
-
)
|
| 236 |
-
|
| 237 |
-
# --------------------------- Оптимизатор ---------------------------
|
| 238 |
-
def get_param_groups(module, weight_decay=0.001):
|
| 239 |
-
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 240 |
-
decay_params, no_decay_params = [], []
|
| 241 |
-
for n, p in vae.named_parameters(): # глобально по vae, с фильтром requires_grad
|
| 242 |
-
if not p.requires_grad:
|
| 243 |
-
continue
|
| 244 |
-
if any(nd in n for nd in no_decay):
|
| 245 |
-
no_decay_params.append(p)
|
| 246 |
-
else:
|
| 247 |
-
decay_params.append(p)
|
| 248 |
-
return [
|
| 249 |
-
{"params": decay_params, "weight_decay": weight_decay},
|
| 250 |
-
{"params": no_decay_params, "weight_decay": 0.0},
|
| 251 |
-
]
|
| 252 |
-
|
| 253 |
-
def create_optimizer(name, param_groups):
|
| 254 |
-
if name == "adam8bit":
|
| 255 |
-
return bnb.optim.AdamW8bit(param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps)
|
| 256 |
-
raise ValueError(name)
|
| 257 |
-
|
| 258 |
-
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
|
| 259 |
-
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 260 |
-
|
| 261 |
-
# --------------------------- LR schedule ---------------------------
|
| 262 |
-
batches_per_epoch = len(dataloader)
|
| 263 |
-
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps)))
|
| 264 |
-
total_steps = steps_per_epoch * num_epochs
|
| 265 |
-
|
| 266 |
-
def lr_lambda(step):
|
| 267 |
-
if not use_decay:
|
| 268 |
-
return 1.0
|
| 269 |
-
x = float(step) / float(max(1, total_steps))
|
| 270 |
-
warmup = float(warmup_percent)
|
| 271 |
-
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 272 |
-
if x < warmup:
|
| 273 |
-
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 274 |
-
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 275 |
-
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 276 |
-
|
| 277 |
-
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 278 |
-
|
| 279 |
-
# Подготовка
|
| 280 |
-
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 281 |
-
trainable_params = [p for p in vae.parameters() if p.requires_grad]
|
| 282 |
-
|
| 283 |
-
# --------------------------- LPIPS и вспомогательные ---------------------------
|
| 284 |
-
_lpips_net = None
|
| 285 |
-
def _get_lpips():
|
| 286 |
-
global _lpips_net
|
| 287 |
-
if _lpips_net is None:
|
| 288 |
-
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 289 |
-
return _lpips_net
|
| 290 |
-
|
| 291 |
-
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
| 292 |
-
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
| 293 |
-
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
| 294 |
-
C = x.shape[1]
|
| 295 |
-
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 296 |
-
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 297 |
-
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 298 |
-
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 299 |
-
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 300 |
-
|
| 301 |
-
class MedianLossNormalizer:
|
| 302 |
-
def __init__(self, desired_ratios: dict, window_steps: int):
|
| 303 |
-
s = sum(desired_ratios.values())
|
| 304 |
-
self.ratios = {k: (v / s) if s > 0 else 0.0 for k, v in desired_ratios.items()}
|
| 305 |
-
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
| 306 |
-
self.window = window_steps
|
| 307 |
-
|
| 308 |
-
def update_and_total(self, abs_losses: dict):
|
| 309 |
-
for k, v in abs_losses.items():
|
| 310 |
-
if k in self.buffers:
|
| 311 |
-
self.buffers[k].append(float(v.detach().abs().cpu()))
|
| 312 |
-
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
| 313 |
-
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
| 314 |
-
total = sum(coeffs[k] * abs_losses[k] for k in abs_losses if k in coeffs)
|
| 315 |
-
return total, coeffs, meds
|
| 316 |
-
|
| 317 |
-
if full_training and not train_decoder_only:
|
| 318 |
-
loss_ratios["kl"] = float(kl_ratio)
|
| 319 |
-
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
| 320 |
-
|
| 321 |
-
# --------------------------- Сэмплы ---------------------------
|
| 322 |
-
@torch.no_grad()
|
| 323 |
-
def get_fixed_samples(n=3):
|
| 324 |
-
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 325 |
-
pil_imgs = [dataset[i] for i in idx]
|
| 326 |
-
tensors = []
|
| 327 |
-
for img in pil_imgs:
|
| 328 |
-
img = random_crop(img, high_resolution)
|
| 329 |
-
tensors.append(tfm(img))
|
| 330 |
-
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 331 |
-
|
| 332 |
-
fixed_samples = get_fixed_samples()
|
| 333 |
-
|
| 334 |
-
@torch.no_grad()
|
| 335 |
-
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
| 336 |
-
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
| 337 |
-
return Image.fromarray(arr)
|
| 338 |
-
|
| 339 |
-
@torch.no_grad()
|
| 340 |
-
def generate_and_save_samples(step=None):
|
| 341 |
-
try:
|
| 342 |
-
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 343 |
-
lpips_net = _get_lpips()
|
| 344 |
-
with torch.no_grad():
|
| 345 |
-
orig_high = fixed_samples
|
| 346 |
-
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 347 |
-
model_dtype = next(temp_vae.parameters()).dtype
|
| 348 |
-
orig_low = orig_low.to(dtype=model_dtype)
|
| 349 |
-
|
| 350 |
-
# QWEN: добавляем T=1 на encode/decode и снимаем при сравнении
|
| 351 |
-
if is_qwen_vae(temp_vae):
|
| 352 |
-
x_in = orig_low.unsqueeze(2) # [B,3,1,H,W]
|
| 353 |
-
enc = temp_vae.encode(x_in)
|
| 354 |
-
latents_mean = enc.latent_dist.mean
|
| 355 |
-
dec = temp_vae.decode(latents_mean).sample # [B,3,1,H,W]
|
| 356 |
-
rec = dec.squeeze(2) # [B,3,H,W]
|
| 357 |
-
else:
|
| 358 |
-
enc = temp_vae.encode(orig_low)
|
| 359 |
-
latents_mean = enc.latent_dist.mean
|
| 360 |
-
rec = temp_vae.decode(latents_mean).sample
|
| 361 |
-
|
| 362 |
-
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 363 |
-
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 364 |
-
|
| 365 |
-
first_real = _to_pil_uint8(orig_high[0])
|
| 366 |
-
first_dec = _to_pil_uint8(rec[0])
|
| 367 |
-
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
| 368 |
-
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
| 369 |
-
|
| 370 |
-
for i in range(rec.shape[0]):
|
| 371 |
-
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
| 372 |
-
|
| 373 |
-
lpips_scores = []
|
| 374 |
-
for i in range(rec.shape[0]):
|
| 375 |
-
orig_full = orig_high[i:i+1].to(torch.float32)
|
| 376 |
-
rec_full = rec[i:i+1].to(torch.float32)
|
| 377 |
-
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 378 |
-
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 379 |
-
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 380 |
-
lpips_scores.append(lpips_val)
|
| 381 |
-
avg_lpips = float(np.mean(lpips_scores))
|
| 382 |
-
|
| 383 |
-
if use_wandb and accelerator.is_main_process:
|
| 384 |
-
wandb.log({"lpips_mean": avg_lpips}, step=step)
|
| 385 |
-
finally:
|
| 386 |
-
gc.collect()
|
| 387 |
-
torch.cuda.empty_cache()
|
| 388 |
-
|
| 389 |
-
if accelerator.is_main_process and save_model:
|
| 390 |
-
print("Генерация сэмплов до старта обучения...")
|
| 391 |
-
generate_and_save_samples(0)
|
| 392 |
-
|
| 393 |
-
accelerator.wait_for_everyone()
|
| 394 |
-
|
| 395 |
-
# --------------------------- Тренировка ---------------------------
|
| 396 |
-
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 397 |
-
global_step = 0
|
| 398 |
-
min_loss = float("inf")
|
| 399 |
-
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 400 |
-
|
| 401 |
-
for epoch in range(num_epochs):
|
| 402 |
-
vae.train()
|
| 403 |
-
batch_losses, batch_grads = [], []
|
| 404 |
-
track_losses = {k: [] for k in loss_ratios.keys()}
|
| 405 |
-
|
| 406 |
-
for imgs in dataloader:
|
| 407 |
-
with accelerator.accumulate(vae):
|
| 408 |
-
imgs = imgs.to(accelerator.device)
|
| 409 |
-
|
| 410 |
-
if high_resolution != model_resolution:
|
| 411 |
-
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 412 |
-
else:
|
| 413 |
-
imgs_low = imgs
|
| 414 |
-
|
| 415 |
-
model_dtype = next(vae.parameters()).dtype
|
| 416 |
-
imgs_low_model = imgs_low.to(dtype=model_dtype) if imgs_low.dtype != model_dtype else imgs_low
|
| 417 |
-
|
| 418 |
-
# QWEN: encode/decode с T=1
|
| 419 |
-
if is_qwen_vae(vae):
|
| 420 |
-
x_in = imgs_low_model.unsqueeze(2) # [B,3,1,H,W]
|
| 421 |
-
enc = vae.encode(x_in)
|
| 422 |
-
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
| 423 |
-
dec = vae.decode(latents).sample # [B,3,1,H,W]
|
| 424 |
-
rec = dec.squeeze(2) # [B,3,H,W]
|
| 425 |
-
else:
|
| 426 |
-
enc = vae.encode(imgs_low_model)
|
| 427 |
-
latents = enc.latent_dist.mean if train_decoder_only else enc.latent_dist.sample()
|
| 428 |
-
rec = vae.decode(latents).sample
|
| 429 |
-
|
| 430 |
-
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 431 |
-
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 432 |
-
|
| 433 |
-
rec_f32 = rec.to(torch.float32)
|
| 434 |
-
imgs_f32 = imgs.to(torch.float32)
|
| 435 |
-
|
| 436 |
-
abs_losses = {
|
| 437 |
-
"mae": F.l1_loss(rec_f32, imgs_f32),
|
| 438 |
-
"mse": F.mse_loss(rec_f32, imgs_f32),
|
| 439 |
-
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
| 440 |
-
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
| 441 |
-
}
|
| 442 |
-
|
| 443 |
-
if full_training and not train_decoder_only:
|
| 444 |
-
mean = enc.latent_dist.mean
|
| 445 |
-
logvar = enc.latent_dist.logvar
|
| 446 |
-
kl = -0.5 * torch.mean(1 + logvar - mean.pow(2) - logvar.exp())
|
| 447 |
-
abs_losses["kl"] = kl
|
| 448 |
-
else:
|
| 449 |
-
abs_losses["kl"] = torch.tensor(0.0, device=accelerator.device, dtype=torch.float32)
|
| 450 |
-
|
| 451 |
-
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
| 452 |
-
|
| 453 |
-
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 454 |
-
raise RuntimeError("NaN/Inf loss")
|
| 455 |
-
|
| 456 |
-
accelerator.backward(total_loss)
|
| 457 |
-
|
| 458 |
-
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 459 |
-
if accelerator.sync_gradients:
|
| 460 |
-
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 461 |
-
optimizer.step()
|
| 462 |
-
scheduler.step()
|
| 463 |
-
optimizer.zero_grad(set_to_none=True)
|
| 464 |
-
global_step += 1
|
| 465 |
-
progress.update(1)
|
| 466 |
-
|
| 467 |
-
if accelerator.is_main_process:
|
| 468 |
-
try:
|
| 469 |
-
current_lr = optimizer.param_groups[0]["lr"]
|
| 470 |
-
except Exception:
|
| 471 |
-
current_lr = scheduler.get_last_lr()[0]
|
| 472 |
-
|
| 473 |
-
batch_losses.append(total_loss.detach().item())
|
| 474 |
-
batch_grads.append(float(grad_norm.detach().cpu().item()) if isinstance(grad_norm, torch.Tensor) else float(grad_norm))
|
| 475 |
-
for k, v in abs_losses.items():
|
| 476 |
-
track_losses[k].append(float(v.detach().item()))
|
| 477 |
-
|
| 478 |
-
if use_wandb and accelerator.sync_gradients:
|
| 479 |
-
log_dict = {
|
| 480 |
-
"total_loss": float(total_loss.detach().item()),
|
| 481 |
-
"learning_rate": current_lr,
|
| 482 |
-
"epoch": epoch,
|
| 483 |
-
"grad_norm": batch_grads[-1],
|
| 484 |
-
"mode/train_decoder_only": int(train_decoder_only),
|
| 485 |
-
"mode/full_training": int(full_training),
|
| 486 |
-
}
|
| 487 |
-
for k, v in abs_losses.items():
|
| 488 |
-
log_dict[f"loss_{k}"] = float(v.detach().item())
|
| 489 |
-
for k in coeffs:
|
| 490 |
-
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
| 491 |
-
log_dict[f"median_{k}"] = float(meds[k])
|
| 492 |
-
wandb.log(log_dict, step=global_step)
|
| 493 |
-
|
| 494 |
-
if global_step > 0 and global_step % sample_interval == 0:
|
| 495 |
-
if accelerator.is_main_process:
|
| 496 |
-
generate_and_save_samples(global_step)
|
| 497 |
-
accelerator.wait_for_everyone()
|
| 498 |
-
|
| 499 |
-
n_micro = sample_interval * gradient_accumulation_steps
|
| 500 |
-
avg_loss = float(np.mean(batch_losses[-n_micro:])) if len(batch_losses) >= n_micro else float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 501 |
-
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 502 |
-
|
| 503 |
-
if accelerator.is_main_process:
|
| 504 |
-
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 505 |
-
if save_model and avg_loss < min_loss * save_barrier:
|
| 506 |
-
min_loss = avg_loss
|
| 507 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 508 |
-
if use_wandb:
|
| 509 |
-
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
| 510 |
-
|
| 511 |
-
if accelerator.is_main_process:
|
| 512 |
-
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 513 |
-
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 514 |
-
if use_wandb:
|
| 515 |
-
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 516 |
-
|
| 517 |
-
# --------------------------- Финальное сохранение ---------------------------
|
| 518 |
-
if accelerator.is_main_process:
|
| 519 |
-
print("Training finished – saving final model")
|
| 520 |
-
if save_model:
|
| 521 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 522 |
-
|
| 523 |
-
accelerator.free_memory()
|
| 524 |
-
if torch.distributed.is_initialized():
|
| 525 |
-
torch.distributed.destroy_process_group()
|
| 526 |
-
print("Готово!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
train_sdxl_vae_simple.py
DELETED
|
@@ -1,547 +0,0 @@
|
|
| 1 |
-
# -*- coding: utf-8 -*-
|
| 2 |
-
import os
|
| 3 |
-
import math
|
| 4 |
-
import re
|
| 5 |
-
import torch
|
| 6 |
-
import numpy as np
|
| 7 |
-
import random
|
| 8 |
-
import gc
|
| 9 |
-
from datetime import datetime
|
| 10 |
-
from pathlib import Path
|
| 11 |
-
|
| 12 |
-
import torchvision.transforms as transforms
|
| 13 |
-
import torch.nn.functional as F
|
| 14 |
-
from torch.utils.data import DataLoader, Dataset
|
| 15 |
-
from torch.optim.lr_scheduler import LambdaLR
|
| 16 |
-
from diffusers import AutoencoderKL, AsymmetricAutoencoderKL
|
| 17 |
-
from accelerate import Accelerator
|
| 18 |
-
from PIL import Image, UnidentifiedImageError
|
| 19 |
-
from tqdm import tqdm
|
| 20 |
-
import bitsandbytes as bnb
|
| 21 |
-
import wandb
|
| 22 |
-
import lpips # pip install lpips
|
| 23 |
-
from collections import deque
|
| 24 |
-
|
| 25 |
-
# --------------------------- Параметры ---------------------------
|
| 26 |
-
ds_path = "/workspace/png"
|
| 27 |
-
project = "simple_vae"
|
| 28 |
-
batch_size = 3
|
| 29 |
-
base_learning_rate = 5e-5
|
| 30 |
-
min_learning_rate = 9e-7
|
| 31 |
-
num_epochs = 16
|
| 32 |
-
sample_interval_share = 10
|
| 33 |
-
use_wandb = True
|
| 34 |
-
save_model = True
|
| 35 |
-
use_decay = True
|
| 36 |
-
asymmetric = False
|
| 37 |
-
optimizer_type = "adam8bit"
|
| 38 |
-
dtype = torch.float32
|
| 39 |
-
# model_resolution — то, что подавается в VAE (низкое разрешение)
|
| 40 |
-
model_resolution = 512 # бывший `resolution`
|
| 41 |
-
# high_resolution — настоящий «высокий» кроп, на котором считаем метрики и сохраняем сэмплы
|
| 42 |
-
high_resolution = 512
|
| 43 |
-
limit = 0
|
| 44 |
-
save_barrier = 1.03
|
| 45 |
-
warmup_percent = 0.01
|
| 46 |
-
percentile_clipping = 95
|
| 47 |
-
beta2 = 0.97
|
| 48 |
-
eps = 1e-6
|
| 49 |
-
clip_grad_norm = 1.0
|
| 50 |
-
mixed_precision = "no" # или "fp16"/"bf16" при поддержке
|
| 51 |
-
gradient_accumulation_steps = 5
|
| 52 |
-
generated_folder = "samples"
|
| 53 |
-
save_as = "simple_vae_nightly"
|
| 54 |
-
num_workers = 0
|
| 55 |
-
device = None # accelerator задаст устройство
|
| 56 |
-
|
| 57 |
-
# --- Пропорции лоссов и окно медианного нормирования (КОЭФ., не значения) ---
|
| 58 |
-
# Итоговые доли в total loss (сумма = 1.0)
|
| 59 |
-
loss_ratios = {
|
| 60 |
-
"lpips": 0.85,
|
| 61 |
-
"edge": 0.05,
|
| 62 |
-
"mse": 0.05,
|
| 63 |
-
"mae": 0.05,
|
| 64 |
-
}
|
| 65 |
-
median_coeff_steps = 256 # за сколько шагов считать медианные коэффициенты
|
| 66 |
-
|
| 67 |
-
# --------------------------- параметры препроцессинга ---------------------------
|
| 68 |
-
resize_long_side = 1280 # если None или 0 — ресайза не будет; рекомендовано 1280
|
| 69 |
-
|
| 70 |
-
Path(generated_folder).mkdir(parents=True, exist_ok=True)
|
| 71 |
-
|
| 72 |
-
accelerator = Accelerator(
|
| 73 |
-
mixed_precision=mixed_precision,
|
| 74 |
-
gradient_accumulation_steps=gradient_accumulation_steps
|
| 75 |
-
)
|
| 76 |
-
device = accelerator.device
|
| 77 |
-
|
| 78 |
-
# reproducibility
|
| 79 |
-
seed = int(datetime.now().strftime("%Y%m%d"))
|
| 80 |
-
torch.manual_seed(seed)
|
| 81 |
-
np.random.seed(seed)
|
| 82 |
-
random.seed(seed)
|
| 83 |
-
|
| 84 |
-
torch.backends.cudnn.benchmark = True
|
| 85 |
-
|
| 86 |
-
# --------------------------- WandB ---------------------------
|
| 87 |
-
if use_wandb and accelerator.is_main_process:
|
| 88 |
-
wandb.init(project=project, config={
|
| 89 |
-
"batch_size": batch_size,
|
| 90 |
-
"base_learning_rate": base_learning_rate,
|
| 91 |
-
"num_epochs": num_epochs,
|
| 92 |
-
"optimizer_type": optimizer_type,
|
| 93 |
-
"model_resolution": model_resolution,
|
| 94 |
-
"high_resolution": high_resolution,
|
| 95 |
-
"gradient_accumulation_steps": gradient_accumulation_steps,
|
| 96 |
-
})
|
| 97 |
-
|
| 98 |
-
# --------------------------- VAE ---------------------------
|
| 99 |
-
if model_resolution==high_resolution and not asymmetric:
|
| 100 |
-
vae = AutoencoderKL.from_pretrained(project).to(dtype)
|
| 101 |
-
else:
|
| 102 |
-
vae = AsymmetricAutoencoderKL.from_pretrained(project).to(dtype)
|
| 103 |
-
|
| 104 |
-
# torch.compile (если доступно) — просто и без лишней логики
|
| 105 |
-
if hasattr(torch, "compile"):
|
| 106 |
-
try:
|
| 107 |
-
vae = torch.compile(vae)
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print(f"[WARN] torch.compile failed: {e}")
|
| 110 |
-
|
| 111 |
-
# >>> Заморозка всех параметров, затем выборочная разморозка
|
| 112 |
-
for p in vae.parameters():
|
| 113 |
-
p.requires_grad = False
|
| 114 |
-
|
| 115 |
-
decoder = getattr(vae, "decoder", None)
|
| 116 |
-
if decoder is None:
|
| 117 |
-
raise RuntimeError("vae.decoder not found — не могу применить стратегию разморозки. Проверь структуру модели.")
|
| 118 |
-
|
| 119 |
-
unfrozen_param_names = []
|
| 120 |
-
|
| 121 |
-
if not hasattr(decoder, "up_blocks"):
|
| 122 |
-
raise RuntimeError("decoder.up_blocks не найдены — ожидается список блоков декодера.")
|
| 123 |
-
|
| 124 |
-
# >>> Размораживаем все up_blocks и mid_block (как было в твоём варианте start_idx=0)
|
| 125 |
-
n_up = len(decoder.up_blocks)
|
| 126 |
-
start_idx = 0
|
| 127 |
-
for idx in range(start_idx, n_up):
|
| 128 |
-
block = decoder.up_blocks[idx]
|
| 129 |
-
for name, p in block.named_parameters():
|
| 130 |
-
p.requires_grad = True
|
| 131 |
-
unfrozen_param_names.append(f"decoder.up_blocks.{idx}.{name}")
|
| 132 |
-
|
| 133 |
-
if hasattr(decoder, "mid_block"):
|
| 134 |
-
for name, p in decoder.mid_block.named_parameters():
|
| 135 |
-
p.requires_grad = True
|
| 136 |
-
unfrozen_param_names.append(f"decoder.mid_block.{name}")
|
| 137 |
-
else:
|
| 138 |
-
print("[WARN] decoder.mid_block не найден — mid_block не разморожен.")
|
| 139 |
-
|
| 140 |
-
print(f"[INFO] Разморожено параметров: {len(unfrozen_param_names)}. Первые 200 имён:")
|
| 141 |
-
for nm in unfrozen_param_names[:200]:
|
| 142 |
-
print(" ", nm)
|
| 143 |
-
|
| 144 |
-
# сохраняем trainable_module (get_param_groups будет учитывать p.requires_grad)
|
| 145 |
-
trainable_module = vae.decoder
|
| 146 |
-
|
| 147 |
-
# --------------------------- Custom PNG Dataset (only .png, skip corrupted) -----------
|
| 148 |
-
class PngFolderDataset(Dataset):
|
| 149 |
-
def __init__(self, root_dir, min_exts=('.png',), resolution=1024, limit=0):
|
| 150 |
-
self.root_dir = root_dir
|
| 151 |
-
self.resolution = resolution
|
| 152 |
-
self.paths = []
|
| 153 |
-
# collect png files recursively
|
| 154 |
-
for root, _, files in os.walk(root_dir):
|
| 155 |
-
for fname in files:
|
| 156 |
-
if fname.lower().endswith(tuple(ext.lower() for ext in min_exts)):
|
| 157 |
-
self.paths.append(os.path.join(root, fname))
|
| 158 |
-
# optional limit
|
| 159 |
-
if limit:
|
| 160 |
-
self.paths = self.paths[:limit]
|
| 161 |
-
# verify images and keep only valid ones
|
| 162 |
-
valid = []
|
| 163 |
-
for p in self.paths:
|
| 164 |
-
try:
|
| 165 |
-
with Image.open(p) as im:
|
| 166 |
-
im.verify() # fast check for truncated/corrupted images
|
| 167 |
-
valid.append(p)
|
| 168 |
-
except (OSError, UnidentifiedImageError):
|
| 169 |
-
# skip corrupted image
|
| 170 |
-
continue
|
| 171 |
-
self.paths = valid
|
| 172 |
-
if len(self.paths) == 0:
|
| 173 |
-
raise RuntimeError(f"No valid PNG images found under {root_dir}")
|
| 174 |
-
# final shuffle for randomness
|
| 175 |
-
random.shuffle(self.paths)
|
| 176 |
-
|
| 177 |
-
def __len__(self):
|
| 178 |
-
return len(self.paths)
|
| 179 |
-
|
| 180 |
-
def __getitem__(self, idx):
|
| 181 |
-
p = self.paths[idx % len(self.paths)]
|
| 182 |
-
# open and convert to RGB; ensure file is closed promptly
|
| 183 |
-
with Image.open(p) as img:
|
| 184 |
-
img = img.convert("RGB")
|
| 185 |
-
# пережимаем длинную сторону до resize_long_side (Lanczos)
|
| 186 |
-
if not resize_long_side or resize_long_side <= 0:
|
| 187 |
-
return img
|
| 188 |
-
w, h = img.size
|
| 189 |
-
long = max(w, h)
|
| 190 |
-
if long <= resize_long_side:
|
| 191 |
-
return img
|
| 192 |
-
scale = resize_long_side / float(long)
|
| 193 |
-
new_w = int(round(w * scale))
|
| 194 |
-
new_h = int(round(h * scale))
|
| 195 |
-
return img.resize((new_w, new_h), Image.LANCZOS)
|
| 196 |
-
|
| 197 |
-
# --------------------------- Датасет и трансформы ---------------------------
|
| 198 |
-
|
| 199 |
-
def random_crop(img, sz):
|
| 200 |
-
w, h = img.size
|
| 201 |
-
if w < sz or h < sz:
|
| 202 |
-
img = img.resize((max(sz, w), max(sz, h)), Image.LANCZOS)
|
| 203 |
-
x = random.randint(0, max(1, img.width - sz))
|
| 204 |
-
y = random.randint(0, max(1, img.height - sz))
|
| 205 |
-
return img.crop((x, y, x + sz, y + sz))
|
| 206 |
-
|
| 207 |
-
tfm = transforms.Compose([
|
| 208 |
-
transforms.ToTensor(),
|
| 209 |
-
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
|
| 210 |
-
])
|
| 211 |
-
|
| 212 |
-
# build dataset using high_resolution crops
|
| 213 |
-
dataset = PngFolderDataset(ds_path, min_exts=('.png',), resolution=high_resolution, limit=limit)
|
| 214 |
-
if len(dataset) < batch_size:
|
| 215 |
-
raise RuntimeError(f"Not enough valid images ({len(dataset)}) to form a batch of size {batch_size}")
|
| 216 |
-
|
| 217 |
-
# collate_fn кропит до high_resolution
|
| 218 |
-
|
| 219 |
-
def collate_fn(batch):
|
| 220 |
-
imgs = []
|
| 221 |
-
for img in batch: # img is PIL.Image
|
| 222 |
-
img = random_crop(img, high_resolution) # кропим high-res
|
| 223 |
-
imgs.append(tfm(img))
|
| 224 |
-
return torch.stack(imgs)
|
| 225 |
-
|
| 226 |
-
dataloader = DataLoader(
|
| 227 |
-
dataset,
|
| 228 |
-
batch_size=batch_size,
|
| 229 |
-
shuffle=True,
|
| 230 |
-
collate_fn=collate_fn,
|
| 231 |
-
num_workers=num_workers,
|
| 232 |
-
pin_memory=True,
|
| 233 |
-
drop_last=True
|
| 234 |
-
)
|
| 235 |
-
|
| 236 |
-
# --------------------------- Оптимизатор ---------------------------
|
| 237 |
-
|
| 238 |
-
def get_param_groups(module, weight_decay=0.001):
|
| 239 |
-
no_decay = ["bias", "LayerNorm.weight", "layer_norm.weight", "ln_1.weight", "ln_f.weight"]
|
| 240 |
-
decay_params = []
|
| 241 |
-
no_decay_params = []
|
| 242 |
-
for n, p in module.named_parameters():
|
| 243 |
-
if not p.requires_grad:
|
| 244 |
-
continue
|
| 245 |
-
if any(nd in n for nd in no_decay):
|
| 246 |
-
no_decay_params.append(p)
|
| 247 |
-
else:
|
| 248 |
-
decay_params.append(p)
|
| 249 |
-
return [
|
| 250 |
-
{"params": decay_params, "weight_decay": weight_decay},
|
| 251 |
-
{"params": no_decay_params, "weight_decay": 0.0},
|
| 252 |
-
]
|
| 253 |
-
|
| 254 |
-
def create_optimizer(name, param_groups):
|
| 255 |
-
if name == "adam8bit":
|
| 256 |
-
return bnb.optim.AdamW8bit(
|
| 257 |
-
param_groups, lr=base_learning_rate, betas=(0.9, beta2), eps=eps
|
| 258 |
-
)
|
| 259 |
-
raise ValueError(name)
|
| 260 |
-
|
| 261 |
-
param_groups = get_param_groups(trainable_module, weight_decay=0.001)
|
| 262 |
-
optimizer = create_optimizer(optimizer_type, param_groups)
|
| 263 |
-
|
| 264 |
-
# --------------------------- Подготовка Accelerate (вместе) ---------------------------
|
| 265 |
-
|
| 266 |
-
batches_per_epoch = len(dataloader) # число микро-батчей (dataloader steps)
|
| 267 |
-
steps_per_epoch = int(math.ceil(batches_per_epoch / float(gradient_accumulation_steps))) # число optimizer.step() за эпоху
|
| 268 |
-
total_steps = steps_per_epoch * num_epochs
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
def lr_lambda(step):
|
| 272 |
-
if not use_decay:
|
| 273 |
-
return 1.0
|
| 274 |
-
x = float(step) / float(max(1, total_steps))
|
| 275 |
-
warmup = float(warmup_percent)
|
| 276 |
-
min_ratio = float(min_learning_rate) / float(base_learning_rate)
|
| 277 |
-
if x < warmup:
|
| 278 |
-
return min_ratio + (1.0 - min_ratio) * (x / warmup)
|
| 279 |
-
decay_ratio = (x - warmup) / (1.0 - warmup)
|
| 280 |
-
return min_ratio + 0.5 * (1.0 - min_ratio) * (1.0 + math.cos(math.pi * decay_ratio))
|
| 281 |
-
|
| 282 |
-
scheduler = LambdaLR(optimizer, lr_lambda)
|
| 283 |
-
|
| 284 |
-
# Подготовка
|
| 285 |
-
dataloader, vae, optimizer, scheduler = accelerator.prepare(dataloader, vae, optimizer, scheduler)
|
| 286 |
-
|
| 287 |
-
trainable_params = [p for p in vae.decoder.parameters() if p.requires_grad]
|
| 288 |
-
|
| 289 |
-
# --------------------------- LPIPS и вспомогательные функции ---------------------------
|
| 290 |
-
_lpips_net = None
|
| 291 |
-
|
| 292 |
-
def _get_lpips():
|
| 293 |
-
global _lpips_net
|
| 294 |
-
if _lpips_net is None:
|
| 295 |
-
_lpips_net = lpips.LPIPS(net='vgg', verbose=False).eval().to(accelerator.device).eval()
|
| 296 |
-
return _lpips_net
|
| 297 |
-
|
| 298 |
-
# Собель для edge loss
|
| 299 |
-
_sobel_kx = torch.tensor([[[[-1,0,1],[-2,0,2],[-1,0,1]]]], dtype=torch.float32)
|
| 300 |
-
_sobel_ky = torch.tensor([[[[-1,-2,-1],[0,0,0],[1,2,1]]]], dtype=torch.float32)
|
| 301 |
-
|
| 302 |
-
def sobel_edges(x: torch.Tensor) -> torch.Tensor:
|
| 303 |
-
# x: [B,C,H,W] в [-1,1]
|
| 304 |
-
C = x.shape[1]
|
| 305 |
-
kx = _sobel_kx.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 306 |
-
ky = _sobel_ky.to(x.device, x.dtype).repeat(C, 1, 1, 1)
|
| 307 |
-
gx = F.conv2d(x, kx, padding=1, groups=C)
|
| 308 |
-
gy = F.conv2d(x, ky, padding=1, groups=C)
|
| 309 |
-
return torch.sqrt(gx * gx + gy * gy + 1e-12)
|
| 310 |
-
|
| 311 |
-
# Нормализация лоссов по медианам: считаем КОЭФФИЦИЕНТЫ
|
| 312 |
-
class MedianLossNormalizer:
|
| 313 |
-
def __init__(self, desired_ratios: dict, window_steps: int):
|
| 314 |
-
# нормируем доли на случай, если сумма != 1
|
| 315 |
-
s = sum(desired_ratios.values())
|
| 316 |
-
self.ratios = {k: (v / s) for k, v in desired_ratios.items()}
|
| 317 |
-
self.buffers = {k: deque(maxlen=window_steps) for k in self.ratios.keys()}
|
| 318 |
-
self.window = window_steps
|
| 319 |
-
|
| 320 |
-
def update_and_total(self, abs_losses: dict):
|
| 321 |
-
# Заполняем буферы фактическими АБСОЛЮТНЫМИ значениями лоссов
|
| 322 |
-
for k, v in abs_losses.items():
|
| 323 |
-
if k in self.buffers:
|
| 324 |
-
self.buffers[k].append(float(v.detach().cpu()))
|
| 325 |
-
# Медианы (устойчивые к выбросам)
|
| 326 |
-
meds = {k: (np.median(self.buffers[k]) if len(self.buffers[k]) > 0 else 1.0) for k in self.buffers}
|
| 327 |
-
# Вычисляем КОЭФФИЦИЕНТЫ как ratio_k / median_k — т.е. именно коэффициенты, а не значения
|
| 328 |
-
coeffs = {k: (self.ratios[k] / max(meds[k], 1e-12)) for k in self.ratios}
|
| 329 |
-
# Важно: при таких коэффициентах сумма (coeff_k * median_k) = сумма(ratio_k) = 1, т.е. масштаб стабилен
|
| 330 |
-
total = sum(coeffs[k] * abs_losses[k] for k in coeffs)
|
| 331 |
-
return total, coeffs, meds
|
| 332 |
-
|
| 333 |
-
normalizer = MedianLossNormalizer(loss_ratios, median_coeff_steps)
|
| 334 |
-
|
| 335 |
-
# --------------------------- Сэмплы ---------------------------
|
| 336 |
-
@torch.no_grad()
|
| 337 |
-
def get_fixed_samples(n=3):
|
| 338 |
-
idx = random.sample(range(len(dataset)), min(n, len(dataset)))
|
| 339 |
-
pil_imgs = [dataset[i] for i in idx] # dataset returns PIL.Image
|
| 340 |
-
tensors = []
|
| 341 |
-
for img in pil_imgs:
|
| 342 |
-
img = random_crop(img, high_resolution) # high-res fixed samples
|
| 343 |
-
tensors.append(tfm(img))
|
| 344 |
-
return torch.stack(tensors).to(accelerator.device, dtype)
|
| 345 |
-
|
| 346 |
-
fixed_samples = get_fixed_samples()
|
| 347 |
-
|
| 348 |
-
@torch.no_grad()
|
| 349 |
-
def _to_pil_uint8(img_tensor: torch.Tensor) -> Image.Image:
|
| 350 |
-
# img_tensor: [C,H,W] in [-1,1]
|
| 351 |
-
arr = ((img_tensor.float().clamp(-1, 1) + 1.0) * 127.5).clamp(0, 255).byte().cpu().numpy().transpose(1, 2, 0)
|
| 352 |
-
return Image.fromarray(arr)
|
| 353 |
-
|
| 354 |
-
@torch.no_grad()
|
| 355 |
-
def generate_and_save_samples(step=None):
|
| 356 |
-
try:
|
| 357 |
-
temp_vae = accelerator.unwrap_model(vae).eval()
|
| 358 |
-
lpips_net = _get_lpips()
|
| 359 |
-
with torch.no_grad():
|
| 360 |
-
# Готовим low-res вход для кодера ВСЕГДА под model_resolution
|
| 361 |
-
orig_high = fixed_samples # [B,C,H,W] в [-1,1]
|
| 362 |
-
orig_low = F.interpolate(orig_high, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 363 |
-
# dtype как у модели
|
| 364 |
-
model_dtype = next(temp_vae.parameters()).dtype
|
| 365 |
-
orig_low = orig_low.to(dtype=model_dtype)
|
| 366 |
-
# encode/decode
|
| 367 |
-
latents = temp_vae.encode(orig_low).latent_dist.mean
|
| 368 |
-
rec = temp_vae.decode(latents).sample
|
| 369 |
-
|
| 370 |
-
# Приводим spatial размер рекона к high-res (downsample для асимметричных VAE)
|
| 371 |
-
if rec.shape[-2:] != orig_high.shape[-2:]:
|
| 372 |
-
rec = F.interpolate(rec, size=orig_high.shape[-2:], mode="bilinear", align_corners=False)
|
| 373 |
-
|
| 374 |
-
# Сохраняем ПЕРВЫЙ семпл: real и decoded без номера шага в имени
|
| 375 |
-
first_real = _to_pil_uint8(orig_high[0])
|
| 376 |
-
first_dec = _to_pil_uint8(rec[0])
|
| 377 |
-
first_real.save(f"{generated_folder}/sample_real.jpg", quality=95)
|
| 378 |
-
first_dec.save(f"{generated_folder}/sample_decoded.jpg", quality=95)
|
| 379 |
-
|
| 380 |
-
# Дополнительно сохраняем текущие реконструкции без номера шага (чтобы не плодить файлы — будут перезаписываться)
|
| 381 |
-
for i in range(rec.shape[0]):
|
| 382 |
-
_to_pil_uint8(rec[i]).save(f"{generated_folder}/sample_{i}.jpg", quality=95)
|
| 383 |
-
|
| 384 |
-
# LPIPS на полном изображении (high-res) — для лога
|
| 385 |
-
lpips_scores = []
|
| 386 |
-
for i in range(rec.shape[0]):
|
| 387 |
-
orig_full = orig_high[i:i+1].to(torch.float32)
|
| 388 |
-
rec_full = rec[i:i+1].to(torch.float32)
|
| 389 |
-
if rec_full.shape[-2:] != orig_full.shape[-2:]:
|
| 390 |
-
rec_full = F.interpolate(rec_full, size=orig_full.shape[-2:], mode="bilinear", align_corners=False)
|
| 391 |
-
lpips_val = lpips_net(orig_full, rec_full).item()
|
| 392 |
-
lpips_scores.append(lpips_val)
|
| 393 |
-
avg_lpips = float(np.mean(lpips_scores))
|
| 394 |
-
|
| 395 |
-
if use_wandb and accelerator.is_main_process:
|
| 396 |
-
wandb.log({
|
| 397 |
-
"lpips_mean": avg_lpips,
|
| 398 |
-
}, step=step)
|
| 399 |
-
finally:
|
| 400 |
-
gc.collect()
|
| 401 |
-
torch.cuda.empty_cache()
|
| 402 |
-
|
| 403 |
-
if accelerator.is_main_process and save_model:
|
| 404 |
-
print("Генерация сэмплов до старта обучения...")
|
| 405 |
-
generate_and_save_samples(0)
|
| 406 |
-
|
| 407 |
-
accelerator.wait_for_everyone()
|
| 408 |
-
|
| 409 |
-
# --------------------------- Тренировка ---------------------------
|
| 410 |
-
|
| 411 |
-
progress = tqdm(total=total_steps, disable=not accelerator.is_local_main_process)
|
| 412 |
-
global_step = 0
|
| 413 |
-
min_loss = float("inf")
|
| 414 |
-
sample_interval = max(1, total_steps // max(1, sample_interval_share * num_epochs))
|
| 415 |
-
|
| 416 |
-
for epoch in range(num_epochs):
|
| 417 |
-
vae.train()
|
| 418 |
-
batch_losses = []
|
| 419 |
-
batch_grads = []
|
| 420 |
-
# Доп. трекинг по отдельным лоссам
|
| 421 |
-
track_losses = {k: [] for k in loss_ratios.keys()}
|
| 422 |
-
for imgs in dataloader:
|
| 423 |
-
with accelerator.accumulate(vae):
|
| 424 |
-
# imgs: high-res tensor from dataloader ([-1,1]), move to device
|
| 425 |
-
imgs = imgs.to(accelerator.device)
|
| 426 |
-
|
| 427 |
-
# ВСЕГДА даунсемплим вход под model_resolution для кодера
|
| 428 |
-
# Тупая железяка норовит все по своему сделать
|
| 429 |
-
if high_resolution != model_resolution:
|
| 430 |
-
imgs_low = F.interpolate(imgs, size=(model_resolution, model_resolution), mode="bilinear", align_corners=False)
|
| 431 |
-
else:
|
| 432 |
-
imgs_low = imgs
|
| 433 |
-
|
| 434 |
-
# ensure dtype matches model params to avoid float/half mismatch
|
| 435 |
-
model_dtype = next(vae.parameters()).dtype
|
| 436 |
-
if imgs_low.dtype != model_dtype:
|
| 437 |
-
imgs_low_model = imgs_low.to(dtype=model_dtype)
|
| 438 |
-
else:
|
| 439 |
-
imgs_low_model = imgs_low
|
| 440 |
-
|
| 441 |
-
# Encode/decode
|
| 442 |
-
latents = vae.encode(imgs_low_model).latent_dist.mean
|
| 443 |
-
rec = vae.decode(latents).sample # rec может быть увеличенным (асимметричный VAE)
|
| 444 |
-
|
| 445 |
-
# Приводим размер к high-res
|
| 446 |
-
if rec.shape[-2:] != imgs.shape[-2:]:
|
| 447 |
-
rec = F.interpolate(rec, size=imgs.shape[-2:], mode="bilinear", align_corners=False)
|
| 448 |
-
|
| 449 |
-
# Лоссы считаем на high-res
|
| 450 |
-
rec_f32 = rec.to(torch.float32)
|
| 451 |
-
imgs_f32 = imgs.to(torch.float32)
|
| 452 |
-
|
| 453 |
-
# Отдельные лоссы
|
| 454 |
-
abs_losses = {
|
| 455 |
-
"mae": F.l1_loss(rec_f32, imgs_f32),
|
| 456 |
-
"mse": F.mse_loss(rec_f32, imgs_f32),
|
| 457 |
-
"lpips": _get_lpips()(rec_f32, imgs_f32).mean(),
|
| 458 |
-
"edge": F.l1_loss(sobel_edges(rec_f32), sobel_edges(imgs_f32)),
|
| 459 |
-
}
|
| 460 |
-
|
| 461 |
-
# Total с медианными КОЭФФИЦИЕНТАМИ
|
| 462 |
-
# Не надо так орать когда у тебя получилось понять мою идею
|
| 463 |
-
total_loss, coeffs, meds = normalizer.update_and_total(abs_losses)
|
| 464 |
-
|
| 465 |
-
if torch.isnan(total_loss) or torch.isinf(total_loss):
|
| 466 |
-
print("NaN/Inf loss – stopping")
|
| 467 |
-
raise RuntimeError("NaN/Inf loss")
|
| 468 |
-
|
| 469 |
-
accelerator.backward(total_loss)
|
| 470 |
-
|
| 471 |
-
grad_norm = torch.tensor(0.0, device=accelerator.device)
|
| 472 |
-
if accelerator.sync_gradients:
|
| 473 |
-
grad_norm = accelerator.clip_grad_norm_(trainable_params, clip_grad_norm)
|
| 474 |
-
optimizer.step()
|
| 475 |
-
scheduler.step()
|
| 476 |
-
optimizer.zero_grad(set_to_none=True)
|
| 477 |
-
|
| 478 |
-
global_step += 1
|
| 479 |
-
progress.update(1)
|
| 480 |
-
|
| 481 |
-
# --- Логирование ---
|
| 482 |
-
if accelerator.is_main_process:
|
| 483 |
-
try:
|
| 484 |
-
current_lr = optimizer.param_groups[0]["lr"]
|
| 485 |
-
except Exception:
|
| 486 |
-
current_lr = scheduler.get_last_lr()[0]
|
| 487 |
-
|
| 488 |
-
batch_losses.append(total_loss.detach().item())
|
| 489 |
-
batch_grads.append(float(grad_norm if isinstance(grad_norm, (float, int)) else grad_norm.cpu().item()))
|
| 490 |
-
for k, v in abs_losses.items():
|
| 491 |
-
track_losses[k].append(float(v.detach().item()))
|
| 492 |
-
|
| 493 |
-
if use_wandb and accelerator.sync_gradients:
|
| 494 |
-
log_dict = {
|
| 495 |
-
"total_loss": float(total_loss.detach().item()),
|
| 496 |
-
"learning_rate": current_lr,
|
| 497 |
-
"epoch": epoch,
|
| 498 |
-
"grad_norm": batch_grads[-1],
|
| 499 |
-
}
|
| 500 |
-
# добавляем отдельные лоссы
|
| 501 |
-
for k, v in abs_losses.items():
|
| 502 |
-
log_dict[f"loss_{k}"] = float(v.detach().item())
|
| 503 |
-
# логи коэффициентов и медиан
|
| 504 |
-
for k in coeffs:
|
| 505 |
-
log_dict[f"coeff_{k}"] = float(coeffs[k])
|
| 506 |
-
log_dict[f"median_{k}"] = float(meds[k])
|
| 507 |
-
wandb.log(log_dict, step=global_step)
|
| 508 |
-
|
| 509 |
-
# периодические сэмплы и чекпоинты
|
| 510 |
-
if global_step > 0 and global_step % sample_interval == 0:
|
| 511 |
-
if accelerator.is_main_process:
|
| 512 |
-
generate_and_save_samples(global_step)
|
| 513 |
-
accelerator.wait_for_everyone()
|
| 514 |
-
|
| 515 |
-
# Средние по последним итерациям
|
| 516 |
-
n_micro = sample_interval * gradient_accumulation_steps
|
| 517 |
-
if len(batch_losses) >= n_micro:
|
| 518 |
-
avg_loss = float(np.mean(batch_losses[-n_micro:]))
|
| 519 |
-
else:
|
| 520 |
-
avg_loss = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 521 |
-
|
| 522 |
-
avg_grad = float(np.mean(batch_grads[-n_micro:])) if len(batch_grads) >= 1 else float(np.mean(batch_grads)) if batch_grads else 0.0
|
| 523 |
-
|
| 524 |
-
if accelerator.is_main_process:
|
| 525 |
-
print(f"Epoch {epoch} step {global_step} loss: {avg_loss:.6f}, grad_norm: {avg_grad:.6f}, lr: {current_lr:.9f}")
|
| 526 |
-
if save_model and avg_loss < min_loss * save_barrier:
|
| 527 |
-
min_loss = avg_loss
|
| 528 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 529 |
-
if use_wandb:
|
| 530 |
-
wandb.log({"interm_loss": avg_loss, "interm_grad": avg_grad}, step=global_step)
|
| 531 |
-
|
| 532 |
-
if accelerator.is_main_process:
|
| 533 |
-
epoch_avg = float(np.mean(batch_losses)) if batch_losses else float("nan")
|
| 534 |
-
print(f"Epoch {epoch} done, avg loss {epoch_avg:.6f}")
|
| 535 |
-
if use_wandb:
|
| 536 |
-
wandb.log({"epoch_loss": epoch_avg, "epoch": epoch + 1}, step=global_step)
|
| 537 |
-
|
| 538 |
-
# --------------------------- Финальное сохранение ---------------------------
|
| 539 |
-
if accelerator.is_main_process:
|
| 540 |
-
print("Training finished – saving final model")
|
| 541 |
-
if save_model:
|
| 542 |
-
accelerator.unwrap_model(vae).save_pretrained(save_as)
|
| 543 |
-
|
| 544 |
-
accelerator.free_memory()
|
| 545 |
-
if torch.distributed.is_initialized():
|
| 546 |
-
torch.distributed.destroy_process_group()
|
| 547 |
-
print("Готово!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vae/config.json
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
{
|
| 2 |
"_class_name": "AutoencoderKL",
|
| 3 |
-
"_diffusers_version": "0.
|
| 4 |
-
"_name_or_path": "sdxl_vae",
|
| 5 |
"act_fn": "silu",
|
| 6 |
"block_out_channels": [
|
| 7 |
128,
|
|
|
|
| 1 |
{
|
| 2 |
"_class_name": "AutoencoderKL",
|
| 3 |
+
"_diffusers_version": "0.35.1",
|
| 4 |
+
"_name_or_path": "AiArtLab/sdxl_vae",
|
| 5 |
"act_fn": "silu",
|
| 6 |
"block_out_channels": [
|
| 7 |
128,
|
vae/diffusion_pytorch_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f9f3bf86e95df913a45a4a238709c47f24530c07d10e0f923b0dae2f679799ea
|
| 3 |
+
size 167335342
|
vae_nightly/config.json
DELETED
|
@@ -1,38 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"_class_name": "AutoencoderKL",
|
| 3 |
-
"_diffusers_version": "0.35.0.dev0",
|
| 4 |
-
"_name_or_path": "vae",
|
| 5 |
-
"act_fn": "silu",
|
| 6 |
-
"block_out_channels": [
|
| 7 |
-
128,
|
| 8 |
-
256,
|
| 9 |
-
512,
|
| 10 |
-
512
|
| 11 |
-
],
|
| 12 |
-
"down_block_types": [
|
| 13 |
-
"DownEncoderBlock2D",
|
| 14 |
-
"DownEncoderBlock2D",
|
| 15 |
-
"DownEncoderBlock2D",
|
| 16 |
-
"DownEncoderBlock2D"
|
| 17 |
-
],
|
| 18 |
-
"force_upcast": false,
|
| 19 |
-
"in_channels": 3,
|
| 20 |
-
"latent_channels": 4,
|
| 21 |
-
"latents_mean": null,
|
| 22 |
-
"latents_std": null,
|
| 23 |
-
"layers_per_block": 2,
|
| 24 |
-
"mid_block_add_attention": true,
|
| 25 |
-
"norm_num_groups": 32,
|
| 26 |
-
"out_channels": 3,
|
| 27 |
-
"sample_size": 512,
|
| 28 |
-
"scaling_factor": 0.13025,
|
| 29 |
-
"shift_factor": null,
|
| 30 |
-
"up_block_types": [
|
| 31 |
-
"UpDecoderBlock2D",
|
| 32 |
-
"UpDecoderBlock2D",
|
| 33 |
-
"UpDecoderBlock2D",
|
| 34 |
-
"UpDecoderBlock2D"
|
| 35 |
-
],
|
| 36 |
-
"use_post_quant_conv": true,
|
| 37 |
-
"use_quant_conv": true
|
| 38 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
vae_nightly/diffusion_pytorch_model.safetensors
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:588db8438a9dea0c4c68dfd4cbdc7747b1ed3601f2a71f46d1608fae9bdb96a3
|
| 3 |
-
size 334643268
|
|
|
|
|
|
|
|
|
|
|
|