Add Text Embeddings Inference (TEI) tag & snippet
#15
by
alvarobartt
HF Staff
- opened
README.md
CHANGED
|
@@ -10,6 +10,7 @@ library_name: transformers
|
|
| 10 |
tags:
|
| 11 |
- sentence-transformers
|
| 12 |
- transformers.js
|
|
|
|
| 13 |
---
|
| 14 |
|
| 15 |
# gte-reranker-modernbert-base
|
|
@@ -129,6 +130,45 @@ const { logits } = await model(inputs);
|
|
| 129 |
console.log(logits.tolist()); // [[2.138258218765259], [2.4609625339508057], [-1.6775450706481934]]
|
| 130 |
```
|
| 131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
## Training Details
|
| 133 |
|
| 134 |
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
|
|
|
|
| 10 |
tags:
|
| 11 |
- sentence-transformers
|
| 12 |
- transformers.js
|
| 13 |
+
- text-embeddings-inference
|
| 14 |
---
|
| 15 |
|
| 16 |
# gte-reranker-modernbert-base
|
|
|
|
| 130 |
console.log(logits.tolist()); // [[2.138258218765259], [2.4609625339508057], [-1.6775450706481934]]
|
| 131 |
```
|
| 132 |
|
| 133 |
+
Additionally, you can also deploy `Alibaba-NLP/gte-reranker-modernbert-base` with [Text Embeddings Inference (TEI)](https://github.com/huggingface/text-embeddings-inference) as follows:
|
| 134 |
+
|
| 135 |
+
- CPU
|
| 136 |
+
|
| 137 |
+
```bash
|
| 138 |
+
docker run --platform linux/amd64 \
|
| 139 |
+
-p 8080:80 \
|
| 140 |
+
-v $PWD/data:/data \
|
| 141 |
+
--pull always \
|
| 142 |
+
ghcr.io/huggingface/text-embeddings-inference:cpu-1.7 \
|
| 143 |
+
--model-id Alibaba-NLP/gte-reranker-modernbert-base
|
| 144 |
+
```
|
| 145 |
+
|
| 146 |
+
- GPU
|
| 147 |
+
|
| 148 |
+
```bash
|
| 149 |
+
docker run --gpus all \
|
| 150 |
+
-p 8080:80 \
|
| 151 |
+
-v $PWD/data:/data \
|
| 152 |
+
--pull always \
|
| 153 |
+
ghcr.io/huggingface/text-embeddings-inference:1.7 \
|
| 154 |
+
--model-id Alibaba-NLP/gte-reranker-modernbert-base
|
| 155 |
+
```
|
| 156 |
+
|
| 157 |
+
Then you can send requests to the deployed API via the `/rerank` route (see the [Text Embeddings Inference OpenAPI Specification](https://huggingface.github.io/text-embeddings-inference/) for more details):
|
| 158 |
+
|
| 159 |
+
```bash
|
| 160 |
+
curl https://0.0.0.0:8080/rerank \
|
| 161 |
+
-H "Content-Type: application/json" \
|
| 162 |
+
-d '{
|
| 163 |
+
"query": "What is the capital of China?",
|
| 164 |
+
"raw_scores": false,
|
| 165 |
+
"return_text": false,
|
| 166 |
+
"texts": [ "Beijing" ],
|
| 167 |
+
"truncate": true,
|
| 168 |
+
"truncation_direction": "right"
|
| 169 |
+
}'
|
| 170 |
+
```
|
| 171 |
+
|
| 172 |
## Training Details
|
| 173 |
|
| 174 |
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co/collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co/Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co/answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
|