TRIC-Trilingual Recognition of Irony with Confidence
Collection
This collections contains data and models used for the TRIC (Trilingual Recognition of Irony with Confidence) paper (under review)
•
17 items
•
Updated
This model is a fine-tuned version of microsoft/mdeberta-v3-base on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
| Training Loss | Epoch | Step | Validation Loss | Mse | Rmse | Mae | R2 | F1 | Precision | Recall | Accuracy |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 3.5638 | 0.2141 | 100 | 3.5430 | 3.6731 | 1.9165 | 1.8782 | -0.0652 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
| 3.2282 | 0.4283 | 200 | 3.1915 | 3.7250 | 1.9300 | 1.6743 | -0.0802 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
| 3.0493 | 0.6424 | 300 | 3.0534 | 3.1846 | 1.7845 | 1.6116 | 0.0765 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
| 2.9037 | 0.8565 | 400 | 2.9377 | 3.3112 | 1.8197 | 1.4246 | 0.0398 | 0.4761 | 0.3859 | 0.6212 | 0.6212 |
| 2.7728 | 1.0707 | 500 | 2.7732 | 3.0639 | 1.7504 | 1.3655 | 0.1115 | 0.6107 | 0.6498 | 0.6586 | 0.6586 |
| 2.6147 | 1.2848 | 600 | 2.6980 | 3.0434 | 1.7445 | 1.3281 | 0.1174 | 0.6937 | 0.6983 | 0.6912 | 0.6912 |
| 2.5372 | 1.4989 | 700 | 2.5946 | 3.0024 | 1.7327 | 1.2220 | 0.1293 | 0.6905 | 0.6908 | 0.6984 | 0.6984 |
| 2.4555 | 1.7131 | 800 | 2.4696 | 2.7563 | 1.6602 | 1.1809 | 0.2007 | 0.7178 | 0.7173 | 0.7226 | 0.7226 |
| 2.4496 | 1.9272 | 900 | 2.4942 | 2.6828 | 1.6379 | 1.2232 | 0.2220 | 0.7327 | 0.7355 | 0.7310 | 0.7310 |
| 2.298 | 2.1413 | 1000 | 2.5051 | 3.0072 | 1.7341 | 1.1086 | 0.1279 | 0.7176 | 0.7205 | 0.7262 | 0.7262 |
| 2.2482 | 2.3555 | 1100 | 2.4543 | 2.8938 | 1.7011 | 1.0748 | 0.1608 | 0.7215 | 0.7344 | 0.7358 | 0.7358 |
| 2.0678 | 2.5696 | 1200 | 2.3826 | 2.8914 | 1.7004 | 1.0338 | 0.1615 | 0.7434 | 0.7460 | 0.7419 | 0.7419 |
| 2.0865 | 2.7837 | 1300 | 2.3957 | 2.8504 | 1.6883 | 1.0145 | 0.1734 | 0.7383 | 0.7397 | 0.7443 | 0.7443 |
| 2.1771 | 2.9979 | 1400 | 2.3659 | 2.7370 | 1.6544 | 1.0579 | 0.2063 | 0.7438 | 0.7434 | 0.7443 | 0.7443 |
| 2.0164 | 3.2120 | 1500 | 2.3783 | 2.9071 | 1.7050 | 1.0398 | 0.1570 | 0.7462 | 0.7497 | 0.7443 | 0.7443 |
| 1.9577 | 3.4261 | 1600 | 2.4072 | 2.8902 | 1.7001 | 1.0543 | 0.1619 | 0.7471 | 0.7549 | 0.7443 | 0.7443 |
| 1.8874 | 3.6403 | 1700 | 2.3547 | 2.7913 | 1.6707 | 0.9795 | 0.1905 | 0.7523 | 0.7537 | 0.7575 | 0.7575 |
| 1.8746 | 3.8544 | 1800 | 2.3244 | 2.6767 | 1.6361 | 1.0024 | 0.2238 | 0.7507 | 0.7499 | 0.7527 | 0.7527 |
| 1.9356 | 4.0685 | 1900 | 2.3361 | 2.8166 | 1.6783 | 1.0217 | 0.1832 | 0.7568 | 0.7573 | 0.7563 | 0.7563 |
| 1.7507 | 4.2827 | 2000 | 2.3419 | 2.7575 | 1.6606 | 0.9867 | 0.2003 | 0.7506 | 0.7512 | 0.7551 | 0.7551 |
| 1.7485 | 4.4968 | 2100 | 2.3295 | 2.8323 | 1.6830 | 1.0109 | 0.1786 | 0.7573 | 0.7587 | 0.7563 | 0.7563 |
| 1.7336 | 4.7109 | 2200 | 2.3332 | 2.7262 | 1.6511 | 0.9578 | 0.2094 | 0.7565 | 0.7590 | 0.7624 | 0.7624 |
| 1.739 | 4.9251 | 2300 | 2.4113 | 2.9928 | 1.7300 | 1.0314 | 0.1321 | 0.7415 | 0.7454 | 0.7394 | 0.7394 |
| 1.6066 | 5.1392 | 2400 | 2.4276 | 3.0145 | 1.7362 | 1.0265 | 0.1258 | 0.7613 | 0.7686 | 0.7587 | 0.7587 |
| 1.6271 | 5.3533 | 2500 | 2.3737 | 2.9373 | 1.7138 | 0.9783 | 0.1482 | 0.7597 | 0.7595 | 0.7600 | 0.7600 |
Base model
microsoft/mdeberta-v3-base