PII_classification_m1
This model is a fine-tuned version of yonigo/distilbert-base-multilingual-cased-pii on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5114
- Precision: 0.2198
- Recall: 0.2152
- F1: 0.2175
- Accuracy: 0.8536
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 8
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.5054 | 1.0 | 5036 | 0.4803 | 0.1488 | 0.1167 | 0.1308 | 0.8323 |
0.4305 | 2.0 | 10072 | 0.4536 | 0.1928 | 0.1756 | 0.1838 | 0.8416 |
0.3903 | 3.0 | 15108 | 0.4378 | 0.2003 | 0.1759 | 0.1873 | 0.8495 |
0.3317 | 4.0 | 20144 | 0.4314 | 0.2001 | 0.1782 | 0.1885 | 0.8501 |
0.2925 | 5.0 | 25180 | 0.4395 | 0.2194 | 0.2068 | 0.2130 | 0.8523 |
0.2609 | 6.0 | 30216 | 0.4759 | 0.2195 | 0.2129 | 0.2162 | 0.8529 |
0.2272 | 7.0 | 35252 | 0.4924 | 0.2228 | 0.2140 | 0.2183 | 0.8531 |
0.2059 | 8.0 | 40288 | 0.5114 | 0.2198 | 0.2152 | 0.2175 | 0.8536 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support