populism_classifier_bsample_392
This model is a fine-tuned version of google/rembert on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.1843
- Accuracy: 0.7377
- 1-f1: 0.1837
- 1-recall: 1.0
- 1-precision: 0.1011
- Balanced Acc: 0.8649
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | 1-f1 | 1-recall | 1-precision | Balanced Acc |
|---|---|---|---|---|---|---|---|---|
| 0.2019 | 1.0 | 4 | 1.5559 | 0.5902 | 0.1259 | 1.0 | 0.0672 | 0.7889 |
| 0.1088 | 2.0 | 8 | 0.4846 | 0.8656 | 0.2807 | 0.8889 | 0.1667 | 0.8769 |
| 0.2204 | 3.0 | 12 | 0.6211 | 0.8426 | 0.25 | 0.8889 | 0.1455 | 0.8651 |
| 0.0033 | 4.0 | 16 | 1.1843 | 0.7377 | 0.1837 | 1.0 | 0.1011 | 0.8649 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
Model tree for AnonymousCS/populism_classifier_bsample_392
Base model
google/rembert