multilingual-e5-small embeddings (CoSENTLoss on graded listwise pairs)
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-small
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Language: multilingual
- License: mit
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Antix5/product-embed-multi-e5-small")
# Run inference
sentences = [
'Fun World Angelic Maiden Child Costume',
"Rubie's Costume Co - Girls Gypsy Costume",
'Melissa & Doug Personalized Pattern Blocks & Boards Classic Toy',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7135, 0.6875],
# [0.7135, 1.0000, 0.6791],
# [0.6875, 0.6791, 1.0000]])
Evaluation
Metrics
Information Retrieval
- Dataset:
ir_eval - Evaluated with
InformationRetrievalEvaluator
| Metric | Value |
|---|---|
| cosine_accuracy@1 | 0.9102 |
| cosine_accuracy@3 | 0.957 |
| cosine_accuracy@5 | 0.9727 |
| cosine_accuracy@10 | 1.0 |
| cosine_precision@1 | 0.9102 |
| cosine_precision@3 | 0.5104 |
| cosine_precision@5 | 0.4008 |
| cosine_precision@10 | 0.2969 |
| cosine_recall@1 | 0.1348 |
| cosine_recall@3 | 0.174 |
| cosine_recall@5 | 0.1983 |
| cosine_recall@10 | 0.2487 |
| cosine_ndcg@10 | 0.465 |
| cosine_mrr@10 | 0.9379 |
| cosine_map@1 | 0.9102 |
| cosine_map@3 | 0.5282 |
| cosine_map@5 | 0.421 |
| cosine_map@10 | 0.3311 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 74,864 training samples
- Columns:
text1,text2, andlabel - Approximate statistics based on the first 1000 samples:
text1 text2 label type string string float details - min: 4 tokens
- mean: 19.67 tokens
- max: 54 tokens
- min: 3 tokens
- mean: 15.59 tokens
- max: 72 tokens
- min: 0.0
- mean: 0.53
- max: 1.0
- Samples:
text1 text2 label Premier 26764 Car Spinner, Santa, 25 by 19-1/2-InchPremier 26764 Tourbillon pour voiture, Santa, 25 x 19-1/2 pouces1.0Premier 26764 Car Spinner, Santa, 25 by 19-1/2-InchBNTS, ЧИПСЫ ИЗ ФАСОЛИ NV И МОРСКАЯ СОЛЬ0.0Premier 26764 Car Spinner, Santa, 25 by 19-1/2-InchBeanitos, Чипс из фасоли navy, Сыр на чо0.0 - Loss:
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 32per_device_eval_batch_size: 256learning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1fp16: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 32per_device_eval_batch_size: 256per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | ir_eval_cosine_ndcg@10 |
|---|---|---|---|
| 0.0004 | 1 | 5.9178 | - |
| 0.0427 | 100 | 5.7854 | - |
| 0.0855 | 200 | 5.7118 | - |
| 0.1282 | 300 | 5.6765 | - |
| 0.1709 | 400 | 5.647 | - |
| 0.2137 | 500 | 5.6046 | - |
| 0.2564 | 600 | 5.5859 | - |
| 0.2991 | 700 | 5.5586 | - |
| 0.3419 | 800 | 5.5319 | - |
| 0.3846 | 900 | 5.564 | - |
| 0.4274 | 1000 | 5.577 | 0.4854 |
| 0.4701 | 1100 | 5.5229 | - |
| 0.5128 | 1200 | 5.5294 | - |
| 0.5556 | 1300 | 5.4836 | - |
| 0.5983 | 1400 | 5.4851 | - |
| 0.6410 | 1500 | 5.4646 | - |
| 0.6838 | 1600 | 5.4784 | - |
| 0.7265 | 1700 | 5.481 | - |
| 0.7692 | 1800 | 5.4923 | - |
| 0.8120 | 1900 | 5.4696 | - |
| 0.8547 | 2000 | 5.4932 | 0.4749 |
| 0.8974 | 2100 | 5.4752 | - |
| 0.9402 | 2200 | 5.459 | - |
| 0.9829 | 2300 | 5.4371 | - |
| 1.0256 | 2400 | 5.3701 | - |
| 1.0684 | 2500 | 5.3562 | - |
| 1.1111 | 2600 | 5.4101 | - |
| 1.1538 | 2700 | 5.3829 | - |
| 1.1966 | 2800 | 5.3687 | - |
| 1.2393 | 2900 | 5.36 | - |
| 1.2821 | 3000 | 5.3446 | 0.4725 |
| 1.3248 | 3100 | 5.3757 | - |
| 1.3675 | 3200 | 5.3821 | - |
| 1.4103 | 3300 | 5.3918 | - |
| 1.4530 | 3400 | 5.3083 | - |
| 1.4957 | 3500 | 5.3389 | - |
| 1.5385 | 3600 | 5.3037 | - |
| 1.5812 | 3700 | 5.3424 | - |
| 1.6239 | 3800 | 5.3383 | - |
| 1.6667 | 3900 | 5.3252 | - |
| 1.7094 | 4000 | 5.3358 | 0.4676 |
| 1.7521 | 4100 | 5.2704 | - |
| 1.7949 | 4200 | 5.3415 | - |
| 1.8376 | 4300 | 5.361 | - |
| 1.8803 | 4400 | 5.3654 | - |
| 1.9231 | 4500 | 5.3386 | - |
| 1.9658 | 4600 | 5.3392 | - |
| -1 | -1 | - | 0.4650 |
Framework Versions
- Python: 3.12.11
- Sentence Transformers: 5.1.1
- Transformers: 4.56.2
- PyTorch: 2.8.0+cu126
- Accelerate: 1.10.1
- Datasets: 2.20.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@article{10531646,
author={Huang, Xiang and Peng, Hao and Zou, Dongcheng and Liu, Zhiwei and Li, Jianxin and Liu, Kay and Wu, Jia and Su, Jianlin and Yu, Philip S.},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={CoSENT: Consistent Sentence Embedding via Similarity Ranking},
year={2024},
doi={10.1109/TASLP.2024.3402087}
}
- Downloads last month
- 23
Model tree for Antix5/product-embed-multi-e5-small
Base model
intfloat/multilingual-e5-smallEvaluation results
- Cosine Accuracy@1 on ir evalself-reported0.910
- Cosine Accuracy@3 on ir evalself-reported0.957
- Cosine Accuracy@5 on ir evalself-reported0.973
- Cosine Accuracy@10 on ir evalself-reported1.000
- Cosine Precision@1 on ir evalself-reported0.910
- Cosine Precision@3 on ir evalself-reported0.510
- Cosine Precision@5 on ir evalself-reported0.401
- Cosine Precision@10 on ir evalself-reported0.297
- Cosine Recall@1 on ir evalself-reported0.135
- Cosine Recall@3 on ir evalself-reported0.174