multilingual-e5-small embeddings (CoSENTLoss on graded listwise pairs)

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 dimensions
  • Similarity Function: Cosine Similarity
  • Language: multilingual
  • License: mit

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Antix5/product-embed-multi-e5-small")
# Run inference
sentences = [
    'Fun World Angelic Maiden Child Costume',
    "Rubie's Costume Co - Girls Gypsy Costume",
    'Melissa & Doug Personalized Pattern Blocks & Boards Classic Toy',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.7135, 0.6875],
#         [0.7135, 1.0000, 0.6791],
#         [0.6875, 0.6791, 1.0000]])

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.9102
cosine_accuracy@3 0.957
cosine_accuracy@5 0.9727
cosine_accuracy@10 1.0
cosine_precision@1 0.9102
cosine_precision@3 0.5104
cosine_precision@5 0.4008
cosine_precision@10 0.2969
cosine_recall@1 0.1348
cosine_recall@3 0.174
cosine_recall@5 0.1983
cosine_recall@10 0.2487
cosine_ndcg@10 0.465
cosine_mrr@10 0.9379
cosine_map@1 0.9102
cosine_map@3 0.5282
cosine_map@5 0.421
cosine_map@10 0.3311

Training Details

Training Dataset

Unnamed Dataset

  • Size: 74,864 training samples
  • Columns: text1, text2, and label
  • Approximate statistics based on the first 1000 samples:
    text1 text2 label
    type string string float
    details
    • min: 4 tokens
    • mean: 19.67 tokens
    • max: 54 tokens
    • min: 3 tokens
    • mean: 15.59 tokens
    • max: 72 tokens
    • min: 0.0
    • mean: 0.53
    • max: 1.0
  • Samples:
    text1 text2 label
    Premier 26764 Car Spinner, Santa, 25 by 19-1/2-Inch Premier 26764 Tourbillon pour voiture, Santa, 25 x 19-1/2 pouces 1.0
    Premier 26764 Car Spinner, Santa, 25 by 19-1/2-Inch BNTS, ЧИПСЫ ИЗ ФАСОЛИ NV И МОРСКАЯ СОЛЬ 0.0
    Premier 26764 Car Spinner, Santa, 25 by 19-1/2-Inch Beanitos, Чипс из фасоли navy, Сыр на чо 0.0
  • Loss: CoSENTLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "pairwise_cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 256
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 256
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss ir_eval_cosine_ndcg@10
0.0004 1 5.9178 -
0.0427 100 5.7854 -
0.0855 200 5.7118 -
0.1282 300 5.6765 -
0.1709 400 5.647 -
0.2137 500 5.6046 -
0.2564 600 5.5859 -
0.2991 700 5.5586 -
0.3419 800 5.5319 -
0.3846 900 5.564 -
0.4274 1000 5.577 0.4854
0.4701 1100 5.5229 -
0.5128 1200 5.5294 -
0.5556 1300 5.4836 -
0.5983 1400 5.4851 -
0.6410 1500 5.4646 -
0.6838 1600 5.4784 -
0.7265 1700 5.481 -
0.7692 1800 5.4923 -
0.8120 1900 5.4696 -
0.8547 2000 5.4932 0.4749
0.8974 2100 5.4752 -
0.9402 2200 5.459 -
0.9829 2300 5.4371 -
1.0256 2400 5.3701 -
1.0684 2500 5.3562 -
1.1111 2600 5.4101 -
1.1538 2700 5.3829 -
1.1966 2800 5.3687 -
1.2393 2900 5.36 -
1.2821 3000 5.3446 0.4725
1.3248 3100 5.3757 -
1.3675 3200 5.3821 -
1.4103 3300 5.3918 -
1.4530 3400 5.3083 -
1.4957 3500 5.3389 -
1.5385 3600 5.3037 -
1.5812 3700 5.3424 -
1.6239 3800 5.3383 -
1.6667 3900 5.3252 -
1.7094 4000 5.3358 0.4676
1.7521 4100 5.2704 -
1.7949 4200 5.3415 -
1.8376 4300 5.361 -
1.8803 4400 5.3654 -
1.9231 4500 5.3386 -
1.9658 4600 5.3392 -
-1 -1 - 0.4650

Framework Versions

  • Python: 3.12.11
  • Sentence Transformers: 5.1.1
  • Transformers: 4.56.2
  • PyTorch: 2.8.0+cu126
  • Accelerate: 1.10.1
  • Datasets: 2.20.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

CoSENTLoss

@article{10531646,
    author={Huang, Xiang and Peng, Hao and Zou, Dongcheng and Liu, Zhiwei and Li, Jianxin and Liu, Kay and Wu, Jia and Su, Jianlin and Yu, Philip S.},
    journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
    title={CoSENT: Consistent Sentence Embedding via Similarity Ranking},
    year={2024},
    doi={10.1109/TASLP.2024.3402087}
}
Downloads last month
23
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Antix5/product-embed-multi-e5-small

Finetuned
(128)
this model

Evaluation results