abc_project / README.md
Aspriring's picture
End of training
14c3aca verified
metadata
base_model: stable-diffusion-v1-5/stable-diffusion-v1-5
library_name: diffusers
license: creativeml-openrail-m
inference: true
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - diffusers-training

Text-to-image finetuning - Aspriring/abc_project

This pipeline was finetuned from stable-diffusion-v1-5/stable-diffusion-v1-5 on the HuggingFaceM4/FairFace dataset. Below are some example images generated with the finetuned pipeline using the following prompts: None:

Pipeline usage

You can use the pipeline like so:

from diffusers import DiffusionPipeline
import torch

pipeline = DiffusionPipeline.from_pretrained("Aspriring/abc_project", torch_dtype=torch.float16)
prompt = "Generate a headshot of a man"
image = pipeline(prompt).images[0]
image.save("my_image.png")

Training info

These are the key hyperparameters used during training:

  • Epochs: 1
  • Learning rate: 1e-05
  • Batch size: 1
  • Gradient accumulation steps: 4
  • Image resolution: 512
  • Mixed-precision: fp16

Intended uses & limitations

How to use

# TODO: add an example code snippet for running this diffusion pipeline

Limitations and bias

[TODO: provide examples of latent issues and potential remediations]

Training details

[TODO: describe the data used to train the model]