avid-sponge-222

This model is a fine-tuned version of facebook/convnext-base-224 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1207
  • Accuracy: 0.9622
  • Precision: 0.9631
  • Recall: 0.9622
  • F1: 0.9622
  • Roc Auc: 0.9955

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Roc Auc
1.3883 1.0 17 1.3638 0.1615 0.5315 0.1615 0.1912 0.6131
1.3166 2.0 34 1.2597 0.4622 0.7044 0.4622 0.3777 0.7535
1.1663 3.0 51 1.1127 0.4193 0.6134 0.4193 0.4666 0.7785
0.9862 4.0 68 0.8247 0.5508 0.6135 0.5508 0.5663 0.8250
0.8022 5.0 85 0.6888 0.5417 0.6930 0.5417 0.5632 0.8414
0.6688 6.0 102 0.6198 0.5729 0.7049 0.5729 0.5936 0.8612
0.5649 7.0 119 0.5550 0.6406 0.7094 0.6406 0.6527 0.8871
0.4652 8.0 136 0.4299 0.7253 0.7475 0.7253 0.7265 0.9158
0.3992 9.0 153 0.4714 0.7174 0.8030 0.7174 0.7161 0.9347
0.2838 10.0 170 0.3594 0.7734 0.7821 0.7734 0.7703 0.9419
0.2476 11.0 187 0.3371 0.7747 0.8446 0.7747 0.7716 0.9623
0.1873 12.0 204 0.5076 0.7018 0.7728 0.7018 0.7099 0.9409
0.1933 13.0 221 0.2128 0.8490 0.8705 0.8490 0.8479 0.9800
0.1069 14.0 238 0.1805 0.8971 0.9041 0.8971 0.8980 0.9857
0.0932 15.0 255 0.2421 0.8385 0.8782 0.8385 0.8355 0.9894
0.1033 16.0 272 0.1561 0.9258 0.9307 0.9258 0.9247 0.9936
0.0343 17.0 289 0.1213 0.9531 0.9537 0.9531 0.9531 0.9954
0.0603 18.0 306 0.1270 0.9336 0.9358 0.9336 0.9338 0.9929
0.0325 19.0 323 0.0917 0.9661 0.9672 0.9661 0.9663 0.9975
0.028 20.0 340 0.1041 0.9453 0.9492 0.9453 0.9456 0.9968
0.0283 21.0 357 0.0671 0.9674 0.9675 0.9674 0.9674 0.9968
0.0098 22.0 374 0.0663 0.9635 0.9657 0.9635 0.9638 0.9976
0.0175 23.0 391 0.0669 0.9727 0.9730 0.9727 0.9727 0.9973
0.0106 24.0 408 0.1230 0.9622 0.9626 0.9622 0.9623 0.9950
0.0227 25.0 425 0.0757 0.9596 0.9612 0.9596 0.9599 0.9978
0.0183 26.0 442 0.1207 0.9622 0.9631 0.9622 0.9622 0.9955

Framework versions

  • Transformers 4.52.3
  • Pytorch 2.7.0+cpu
  • Datasets 3.6.0
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
87.6M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for BeckerAnas/avid-sponge-222

Finetuned
(8)
this model