SentenceTransformer based on Snowflake/snowflake-arctic-embed-m-v2.0

This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-m-v2.0 on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Snowflake/snowflake-arctic-embed-m-v2.0
  • Maximum Sequence Length: 8192 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • train

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'GteModel'})
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("BjarneNPO/finetune_21_08_2025_17_18_28")
# Run inference
queries = [
    "fragt wie der Stand zu dem aktuellen Problem ist",
]
documents = [
    'In Klärung mit der Kollegin - Das Problem liegt leider an deren Betreiber. Die sind aber informiert und arbeiten bereits daran',
    'findet diese in der Übersicht der Gruppen.',
    'Userin muss sich an die Bistums IT wenden.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 768] [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[0.3229, 0.0208, 0.0018]])

Evaluation

Metrics

Information Retrieval

  • Dataset: Snowflake/snowflake-arctic-embed-m-v2.0
  • Evaluated with scripts.InformationRetrievalEvaluatorCustom.InformationRetrievalEvaluatorCustom with these parameters:
    {
        "query_prompt_name": "query",
        "corpus_prompt_name": "document"
    }
    
Metric Value
cosine_accuracy@1 0.3285
cosine_accuracy@3 0.5255
cosine_accuracy@5 0.5912
cosine_accuracy@10 0.6788
cosine_precision@1 0.3285
cosine_precision@3 0.2822
cosine_precision@5 0.2672
cosine_precision@10 0.2482
cosine_recall@1 0.0111
cosine_recall@3 0.0375
cosine_recall@5 0.0654
cosine_recall@10 0.109
cosine_ndcg@10 0.2705
cosine_mrr@10 0.4461
cosine_map@100 0.1168

Training Details

Training Dataset

train

  • Dataset: train
  • Size: 19,964 training samples
  • Columns: query and answer
  • Approximate statistics based on the first 1000 samples:
    query answer
    type string string
    details
    • min: 4 tokens
    • mean: 27.77 tokens
    • max: 615 tokens
    • min: 3 tokens
    • mean: 22.87 tokens
    • max: 151 tokens
  • Samples:
    query answer
    Wie kann man die Jahresurlaubsübersicht exportieren? über das 3 Punkte Menü rechts oben. Mitarbeiter auswählen und exportieren
    1. Vertragsabschlüsse werden nicht übertragen

    2. Kinder kommen nicht von nach

    3. Absage kann bei Portalstatus nicht erstellt werden.
    Ticket

    Userin gebeten sich an den Support zu wenden, da der Fehler liegt.
    Wird im Anmeldeportal nicht gefunden. Die Schnittstelle war noch nicht aktiviert und Profil ebenfalls nicht.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim",
        "gather_across_devices": false
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 4
  • learning_rate: 2e-05
  • num_train_epochs: 30
  • lr_scheduler_type: cosine
  • warmup_ratio: 0.1
  • bf16: True
  • tf32: True
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 64
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 4
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 30
  • max_steps: -1
  • lr_scheduler_type: cosine
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: True
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Snowflake/snowflake-arctic-embed-m-v2.0_cosine_ndcg@10
0.1282 10 3.4959 -
0.2564 20 3.4292 -
0.3846 30 3.4574 -
0.5128 40 3.2452 -
0.6410 50 3.138 -
0.7692 60 3.0415 -
0.8974 70 2.927 -
1.0 78 - 0.2437
1.0256 80 2.7918 -
1.1538 90 2.7491 -
1.2821 100 2.6212 -
1.4103 110 2.5664 -
1.5385 120 2.4249 -
1.6667 130 2.3568 -
1.7949 140 2.2513 -
1.9231 150 2.2262 -
2.0 156 - 0.2782
2.0513 160 2.0465 -
2.1795 170 2.0932 -
2.3077 180 2.0553 -
2.4359 190 1.9922 -
2.5641 200 1.9537 -
2.6923 210 1.8484 -
2.8205 220 1.8762 -
2.9487 230 1.755 -
3.0 234 - 0.2676
3.0769 240 1.6551 -
3.2051 250 1.7135 -
3.3333 260 1.6684 -
3.4615 270 1.6556 -
3.5897 280 1.5677 -
3.7179 290 1.5067 -
3.8462 300 1.5204 -
3.9744 310 1.4643 -
4.0 312 - 0.2541
4.1026 320 1.3292 -
4.2308 330 1.4336 -
4.3590 340 1.4306 -
4.4872 350 1.3455 -
4.6154 360 1.3079 -
4.7436 370 1.2589 -
4.8718 380 1.2851 -
5.0 390 1.201 0.2543
5.1282 400 1.1415 -
5.2564 410 1.219 -
5.3846 420 1.215 -
5.5128 430 1.1423 -
5.6410 440 1.0829 -
5.7692 450 1.0705 -
5.8974 460 1.0877 -
6.0 468 - 0.2564
6.0256 470 0.9736 -
6.1538 480 1.0314 -
6.2821 490 1.0072 -
6.4103 500 1.0214 -
6.5385 510 0.9747 -
6.6667 520 0.9298 -
6.7949 530 0.9426 -
6.9231 540 0.9166 -
7.0 546 - 0.2428
7.0513 550 0.8048 -
7.1795 560 0.873 -
7.3077 570 0.9017 -
7.4359 580 0.8477 -
7.5641 590 0.8457 -
7.6923 600 0.7475 -
7.8205 610 0.8235 -
7.9487 620 0.7519 -
8.0 624 - 0.2388
8.0769 630 0.7188 -
8.2051 640 0.7541 -
8.3333 650 0.7432 -
8.4615 660 0.7417 -
8.5897 670 0.6693 -
8.7179 680 0.6548 -
8.8462 690 0.6818 -
8.9744 700 0.6426 -
9.0 702 - 0.2495
9.1026 710 0.5831 -
9.2308 720 0.6503 -
9.3590 730 0.6576 -
9.4872 740 0.6282 -
9.6154 750 0.584 -
9.7436 760 0.5744 -
9.8718 770 0.5818 -
10.0 780 0.5429 0.2499
10.1282 790 0.508 -
10.2564 800 0.5671 -
10.3846 810 0.5556 -
10.5128 820 0.5316 -
10.6410 830 0.4881 -
10.7692 840 0.5073 -
10.8974 850 0.5264 -
11.0 858 - 0.2541
11.0256 860 0.4445 -
11.1538 870 0.4855 -
11.2821 880 0.476 -
11.4103 890 0.4762 -
11.5385 900 0.45 -
11.6667 910 0.4386 -
11.7949 920 0.4436 -
11.9231 930 0.4321 -
12.0 936 - 0.2598
12.0513 940 0.3659 -
12.1795 950 0.4196 -
12.3077 960 0.4285 -
12.4359 970 0.4094 -
12.5641 980 0.4123 -
12.6923 990 0.3555 -
12.8205 1000 0.3994 -
12.9487 1010 0.3584 -
13.0 1014 - 0.2551
13.0769 1020 0.3332 -
13.2051 1030 0.3718 -
13.3333 1040 0.3695 -
13.4615 1050 0.3601 -
13.5897 1060 0.326 -
13.7179 1070 0.3334 -
13.8462 1080 0.3481 -
13.9744 1090 0.3161 -
14.0 1092 - 0.2626
14.1026 1100 0.2976 -
14.2308 1110 0.3257 -
14.3590 1120 0.3343 -
14.4872 1130 0.3177 -
14.6154 1140 0.2942 -
14.7436 1150 0.3015 -
14.8718 1160 0.2829 -
15.0 1170 0.2731 0.2543
15.1282 1180 0.2593 -
15.2564 1190 0.2993 -
15.3846 1200 0.2846 -
15.5128 1210 0.2849 -
15.6410 1220 0.2562 -
15.7692 1230 0.2804 -
15.8974 1240 0.2737 -
16.0 1248 - 0.2585
16.0256 1250 0.2295 -
16.1538 1260 0.2562 -
16.2821 1270 0.2749 -
16.4103 1280 0.2727 -
16.5385 1290 0.2513 -
16.6667 1300 0.2445 -
16.7949 1310 0.2358 -
16.9231 1320 0.2432 -
17.0 1326 - 0.2659
17.0513 1330 0.1989 -
17.1795 1340 0.2347 -
17.3077 1350 0.242 -
17.4359 1360 0.2293 -
17.5641 1370 0.2325 -
17.6923 1380 0.203 -
17.8205 1390 0.2378 -
17.9487 1400 0.2018 -
18.0 1404 - 0.2628
18.0769 1410 0.1847 -
18.2051 1420 0.2154 -
18.3333 1430 0.216 -
18.4615 1440 0.2201 -
18.5897 1450 0.1929 -
18.7179 1460 0.1962 -
18.8462 1470 0.2039 -
18.9744 1480 0.193 -
19.0 1482 - 0.2552
19.1026 1490 0.1802 -
19.2308 1500 0.1998 -
19.3590 1510 0.2019 -
19.4872 1520 0.1979 -
19.6154 1530 0.1852 -
19.7436 1540 0.1765 -
19.8718 1550 0.1881 -
20.0 1560 0.1738 0.2681
20.1282 1570 0.166 -
20.2564 1580 0.187 -
20.3846 1590 0.1902 -
20.5128 1600 0.1843 -
20.6410 1610 0.1673 -
20.7692 1620 0.1773 -
20.8974 1630 0.1803 -
21.0 1638 - 0.2686
21.0256 1640 0.1485 -
21.1538 1650 0.1734 -
21.2821 1660 0.1736 -
21.4103 1670 0.1806 -
21.5385 1680 0.1711 -
21.6667 1690 0.1644 -
21.7949 1700 0.17 -
21.9231 1710 0.1619 -
22.0 1716 - 0.2683
22.0513 1720 0.136 -
22.1795 1730 0.1663 -
22.3077 1740 0.1738 -
22.4359 1750 0.1664 -
22.5641 1760 0.1618 -
22.6923 1770 0.1473 -
22.8205 1780 0.1695 -
22.9487 1790 0.1464 -
23.0 1794 - 0.2723
23.0769 1800 0.1385 -
23.2051 1810 0.1608 -
23.3333 1820 0.1616 -
23.4615 1830 0.1683 -
23.5897 1840 0.1467 -
23.7179 1850 0.1504 -
23.8462 1860 0.1595 -
23.9744 1870 0.1449 -
24.0 1872 - 0.2764
24.1026 1880 0.1364 -
24.2308 1890 0.1656 -
24.3590 1900 0.158 -
24.4872 1910 0.1572 -
24.6154 1920 0.1468 -
24.7436 1930 0.1479 -
24.8718 1940 0.1478 -
25.0 1950 0.1383 0.2674
25.1282 1960 0.1387 -
25.2564 1970 0.1581 -
25.3846 1980 0.1494 -
25.5128 1990 0.151 -
25.6410 2000 0.1383 -
25.7692 2010 0.1513 -
25.8974 2020 0.1488 -
26.0 2028 - 0.2727
26.0256 2030 0.1274 -
26.1538 2040 0.1454 -
26.2821 2050 0.146 -
26.4103 2060 0.1551 -
26.5385 2070 0.14 -
26.6667 2080 0.1442 -
26.7949 2090 0.1469 -
26.9231 2100 0.1437 -
27.0 2106 - 0.2721
27.0513 2110 0.1241 -
27.1795 2120 0.1438 -
27.3077 2130 0.1534 -
27.4359 2140 0.1438 -
27.5641 2150 0.1485 -
27.6923 2160 0.1335 -
27.8205 2170 0.1508 -
27.9487 2180 0.1374 -
28.0 2184 - 0.2712
28.0769 2190 0.1304 -
28.2051 2200 0.1438 -
28.3333 2210 0.1471 -
28.4615 2220 0.154 -
28.5897 2230 0.1377 -
28.7179 2240 0.1352 -
28.8462 2250 0.1517 -
28.9744 2260 0.139 -
29.0 2262 - 0.2710
29.1026 2270 0.1263 -
29.2308 2280 0.1468 -
29.3590 2290 0.1464 -
29.4872 2300 0.1456 -
29.6154 2310 0.1385 -
29.7436 2320 0.1422 -
29.8718 2330 0.1446 -
30.0 2340 0.1359 0.2705
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.11
  • Sentence Transformers: 5.1.0
  • Transformers: 4.55.2
  • PyTorch: 2.8.0+cu129
  • Accelerate: 1.10.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.4

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
-
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for BjarneNPO/async-snow-72

Finetuned
(27)
this model

Evaluation results

  • Cosine Accuracy@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.328
  • Cosine Accuracy@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.526
  • Cosine Accuracy@5 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.591
  • Cosine Accuracy@10 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.679
  • Cosine Precision@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.328
  • Cosine Precision@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.282
  • Cosine Precision@5 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.267
  • Cosine Precision@10 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.248
  • Cosine Recall@1 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.011
  • Cosine Recall@3 on Snowflake/snowflake arctic embed m v2.0
    self-reported
    0.038