metadata
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:4030
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-distilroberta-v1
widget:
- source_sentence: What is the contact email for Dr. Amr Ashraf Mohamed Amin?
sentences:
- >-
Topic: Second Level Courses (Mainstream)
Summary: Outlines the course list for the third and fourth semesters,
including course codes, titles, credit hours, and prerequisites.
Chunk: "Second Level Courses (Mainstream)
Third Semester
• HUM113: Report Writing (2 Credit Hours)
• CIS250: Object-Oriented Programming (3 Credit Hours) – Prerequisite:
CIS150
(Structured Programming)
• BSC221: Discrete Mathematics (3 Credit Hours)
• CIS260: Logic Design (3 Credit Hours) – Prerequisite: BSC121 (Physics
I)
• CIS280: Database Management Systems (3 Credit Hours) – Prerequisite:
CIS150
(Structured Programming)
• CIS240: Statistical Analysis (3 Credit Hours) – Prerequisite: BSC123
(Probability &
Statistics)
• Total Credit Hours: 17
Fourth Semester
• CIS220: Computer Organization & Architecture (3 Credit Hours) –
Prerequisite: CIS260
(Logic Design)
• CIS270: Data Structure (3 Credit Hours) – Prerequisite: CIS250
(Object-Oriented
Programming)
• BSC225: Linear Algebra (3 Credit Hours)
• CIS230: Operations Research (3 Credit Hours)
• CIS243: Artificial Intelligence (3 Credit Hours) – Prerequisite:
CIS150 (Structured
Programming)
• Total Credit Hours: 15"
- >-
The final exam for the Structured programming course, offered by the
general department, from 2022, is available at the following link:
[https://drive.google.com/file/d/1Bpqoa78DcFNC8335i7vucV0nBN-J01v9/view?usp=sharing
- >-
Dr. Amr Ashraf Mohamed Amin is part of the Unknown department and can be
reached at [email protected].
- source_sentence: What systems have been developed for quickly locating missing children?
sentences:
- >-
The final exam for Digital Signal Processing course, offered by the
computer science department, from 2024, is available at the following
link:
[https://drive.google.com/file/d/1RO0aPoom-TA-qgsopwR9krszD_pQIzfJ/view?usp=sharing
- >-
**Lost People Finder**
**Missing Persons Statistics**
Recently, there has been a clear increase in the population. As stated
in a 2005 report, published by the US Department of Justice, over
340,500 of children's population go missing, from their parents, for at
least an hour. Not only was this issue minor in between children, but
also it has been evident that the elderly and people with special needs
seem missing whenever their guardians get distracted.
**Lost People Finder Application**
Through the Lost People Finder application, we can search for missing
people quickly and efficiently by entering the missing person's picture
in the application, and the application searches for him immediately.
- >-
The final exam for the English 1course, offered by the general
department, from 2022, is available at the following link:
[https://drive.google.com/file/d/1IbqLbHuyZoDyhsL1BERpI2P0iLFZmgt8/view].
- source_sentence: What are the conditions for the College Council granting a final chance?
sentences:
- >-
Dr. Zeina Rayan is part of the Unknown department and can be reached at
[email protected].
- >-
Topic: Academic Warning and Dismissal
Summary: Students receive academic warnings for low GPAs and may be
dismissed if the GPA remains low for six semesters or if graduation
requirements aren't met within double the study years. Students can
re-study courses to improve their average, with certain conditions and
grade limits.
Chunk: "Academic warning - dismissal from study - mechanisms of raising
the cumulative average
1. The student is given an academic warning if he obtains a cumulative
average less than "2" for any semester that he must raise his cumulative
average to at least 2.00.
2. A student who is academically probated is dismissed from the study if
the GPA drops below 2.00 is repeated during six main semesters.
3. If the student does not meet the graduation requirements within the
maximum period of study, which is double the years of study according to
the law, he will be dismissed.
4. The College Council may consider the possibility of granting the
student exposed to dismissal as a result of his inability to raise his
cumulative average to At least one and final chance of two semesters to
raise his/her GPA to 2.00 and meet graduation requirements if he/she has
successfully completed at least 80% of the credit hours required for
graduation.
5. The student may re-study the courses in which he has previously
passed in order to improve the cumulative average, and the repetition is
a study and an exam, and the grade he obtained the last time he studied
the course is calculated for him. A maximum of (5) courses unless the
improvement is for the purpose of raising the academic warning or
achieving the graduation requirements, and in all cases, both grades are
mentioned in his academic record.
6. For the student to re-study a course in which he has previously
obtained a grade of (F), the grade he obtained in the repetition is
calculated with a maximum of (B), and for calculating the cumulative
average, the last grade is calculated for him only, provided that both
grades are mentioned in the student's academic record."
- >-
**Abstract**
**Introduction to Renewable Energy**
Renewable energy is gaining great importance nowadays. Solar energy is
one of the most popular renewable energy sources as it is carbon dioxide
free, has low operating costs, and its exploitation helps improve public
health.
**Project Overview**
This project deals with the introduction of an embedded automatic solar
energy tracking system that can be monitored remotely. The main
objective of the system is to exploit the maximum amount of sunlight and
convert it into electricity so that it can be used easily and
efficiently. This can be done by rendering and aligning a model that
drives the solar panels to be perpendicular to and track the sun's rays
so that more energy is generated.
**Advantages of the Tracker System**
The main advantage of this tracker is that the various readings received
from the sensors can be tracked remotely with a decentralized
technological system that allows analysis of results, detection of
faults and making tracking decisions. The advantage of this system is to
provide access to a permanent and contamination-free power supply
source. When connected to large battery banks, they can independently
fill the needs of local areas.
- source_sentence: How can I contact Dr. Doaa Mahmoud?
sentences:
- >-
Dr. Hanan Hindy is part of the CS department and can be reached at
[email protected].
- "The final exam for Database Management System\_course, offered by the general department, from 2019, is available at the following link: [https://drive.google.com/file/d/1OOIPr48WI8Cm3TVzPdel2Dh3SZUQTVxA/view"
- >-
Dr. Doaa Mahmoud is part of the Unknown department and can be reached at
[email protected].
- source_sentence: Where can I find Abdel Badi Salem's email address?
sentences:
- >-
# **Abstract**
One of the main issues we are aiming to help in society are those of the
disabled. Disabilities do not have a single type or manner in which it
attacks the body but comes in a very wide range. At the present time,
the amount of disabled people is **increasing annually**, so we aim to
make a standard wheelchair to aid the mobility of disabled people who
cannot walk; by designing two mechanisms, one uses eye-movement guidance
and the other uses EEG Signals, which goes through pre-processing stage
to extract more information from the data. This' done by segmentation
using a window of size 200 (Sampling frequency), then features
extraction. That takes us to classification, the highest accuracy we got
is on subject [E] for motor imaginary dataset on Classical paradigm,
Multi Level Perceptron classifier (with accuracy of 60.5%), The result
of this classification's used as a command to move the wheelchair after
that.
- >-
# **Abstract**
Sports analytics has been successfully applied in sports like football
and basketball. However, its application in soccer has been limited.
Research in soccer analytics with Machine Learning techniques is limited
and is mostly employed only for predictions. There is a need to find out
if the application of Machine Learning can bring better and more
insightful results in soccer analytics. In this thesis, we perform
descriptive as well as predictive analysis of soccer matches and player
performances.
In football, it is popular to rely on ratings by experts to assess a
player's performance. However, the experts do not unravel the criteria
they use for their rating. We attempt to identify the most important
attributes of player's performance which determine the expert ratings.
In this way we find the latent knowledge which the experts use to assign
ratings to players. We performed a series of classifications with three
different pruning strategies and an array of Machine Learning
algorithms. The best results for predicting ratings using performance
metrics had mean absolute error of 0.17. We obtained a list of most
important performance metrics for each of the playing positions which
approximates the attributes considered by the experts for assigning
ratings. Then we find the most influential performance metrics of the
players for determining the match outcome and we examine the extent to
which the outcome is characterized by the performance attributes of the
players. We found 34 performance attributes
- >-
Dr. Abdel Badi Salem is part of the CS department and can be reached at
[email protected].
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: SentenceTransformer based on sentence-transformers/all-distilroberta-v1
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: ai college validation
type: ai-college-validation
metrics:
- type: cosine_accuracy@1
value: 0.18810557968593383
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4186435015035082
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5676578683595055
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8463080521216171
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18810557968593383
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13954783383450275
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1135315736719011
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08463080521216171
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18810557968593383
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4186435015035082
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5676578683595055
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8463080521216171
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47259073953229414
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3588172667440963
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3678298256041653
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.18843969261610424
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.4173070497828266
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5669896424991647
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8456398262612763
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18843969261610424
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13910234992760886
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11339792849983296
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08456398262612765
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18843969261610424
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.4173070497828266
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5669896424991647
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8456398262612763
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47223133269915585
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3585802056650706
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3676667485080777
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.1102813476901702
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3218131295588746
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5451545675581799
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8817297672803056
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1102813476901702
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1072710431862915
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10903091351163598
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08817297672803058
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1102813476901702
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3218131295588746
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5451545675581799
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8817297672803056
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4323392922230707
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2959338835684789
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.30305652186931414
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.18576678917474107
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42064817908453056
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5699966588706983
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.858002004677581
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18576678917474107
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14021605969484352
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11399933177413965
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08580020046775809
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18576678917474107
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42064817908453056
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5699966588706983
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.858002004677581
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47488287423350733
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.35840307277828215
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3669503238927413
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.1827597728032075
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42198463080521215
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5750083528232542
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8683595055128633
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1827597728032075
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14066154360173738
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11500167056465085
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08683595055128634
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1827597728032075
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42198463080521215
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5750083528232542
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8683595055128633
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4780584736286147
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3594039531393358
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3674823360981191
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.17674574006014032
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42098229201470094
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5720013364517207
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8763782158369529
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.17674574006014032
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.140327430671567
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11440026729034415
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08763782158369529
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.17674574006014032
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42098229201470094
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5720013364517207
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8763782158369529
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.47784861917490756
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.356773211567732
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3644323168133691
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.18843969261610424
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42398930838623455
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5833611760775143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.884062813230872
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18843969261610424
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14132976946207818
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11667223521550285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08840628132308721
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18843969261610424
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42398930838623455
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5833611760775143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.884062813230872
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.48660967480465983
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.36589860468076263
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3731321313039561
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.18843969261610424
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.42332108252589373
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5830270631473438
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8837287003007016
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.18843969261610424
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.14110702750863124
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11660541262946876
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08837287003007016
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.18843969261610424
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.42332108252589373
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5830270631473438
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8837287003007016
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4864124568497682
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.3657506403831158
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.37301454090905195
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: ai college modefied validation
type: ai-college_modefied-validation
metrics:
- type: cosine_accuracy@1
value: 0.1127127474817645
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3218131295588746
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5481069815908302
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8931920805835359
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.1127127474817645
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10727104318629153
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10962139631816603
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08931920805835358
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.1127127474817645
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3218131295588746
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5481069815908302
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8931920805835359
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4379716529188091
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2999361137299657
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.30656764876713344
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.10993400486279958
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.32737061479680446
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5489753386592567
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8989232372351511
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10993400486279958
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10912353826560146
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10979506773185134
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08989232372351512
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10993400486279958
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.32737061479680446
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5489753386592567
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8989232372351511
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.43927652334969547
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2998494158575775
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.30624915588054374
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.10993400486279958
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3268496005557485
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.548627995831886
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8989232372351511
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10993400486279958
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.10894986685191616
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.10972559916637721
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08989232372351512
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10993400486279958
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3268496005557485
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.548627995831886
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8989232372351511
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.43919844728741414
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.29975865186875866
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3061583918917249
name: Cosine Map@100
- type: cosine_accuracy@1
value: 0.10680791941646404
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.33014935741576934
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.558179923584578
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8997915943035776
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.10680791941646404
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.11004978580525644
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11163598471691559
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08997915943035775
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.10680791941646404
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.33014935741576934
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.558179923584578
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8997915943035776
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.4393835206266066
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.2994972488242717
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.3060162279226998
name: Cosine Map@100
SentenceTransformer based on sentence-transformers/all-distilroberta-v1
This is a sentence-transformers model finetuned from sentence-transformers/all-distilroberta-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Bo8dady/finetuned4-College-embeddings")
sentences = [
"Where can I find Abdel Badi Salem's email address?",
'Dr. Abdel Badi Salem is part of the CS department and can be reached at [email protected].',
"# **Abstract**\n\n## **Sports Analytics Overview**\nSports analytics has been successfully applied in sports like football and basketball. However, its application in soccer has been limited. Research in soccer analytics with Machine Learning techniques is limited and is mostly employed only for predictions. There is a need to find out if the application of Machine Learning can bring better and more insightful results in soccer analytics. In this thesis, we perform descriptive as well as predictive analysis of soccer matches and player performances.\n\n## **Football Rating Analysis**\nIn football, it is popular to rely on ratings by experts to assess a player's performance. However, the experts do not unravel the criteria they use for their rating. We attempt to identify the most important attributes of player's performance which determine the expert ratings. In this way we find the latent knowledge which the experts use to assign ratings to players. We performed a series of classifications with three different pruning strategies and an array of Machine Learning algorithms. The best results for predicting ratings using performance metrics had mean absolute error of 0.17. We obtained a list of most important performance metrics for each of the playing positions which approximates the attributes considered by the experts for assigning ratings. Then we find the most influential performance metrics of the players for determining the match outcome and we examine the extent to which the outcome is characterized by the performance attributes of the players. We found 34 performance attributes",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
- Datasets:
ai-college-validation
, ai-college_modefied-validation
, ai-college-validation
, ai-college_modefied-validation
, ai-college-validation
, ai-college_modefied-validation
, ai-college-validation
, ai-college-validation
and ai-college_modefied-validation
- Evaluated with
InformationRetrievalEvaluator
Metric |
ai-college-validation |
ai-college_modefied-validation |
cosine_accuracy@1 |
0.1884 |
0.1068 |
cosine_accuracy@3 |
0.4233 |
0.3301 |
cosine_accuracy@5 |
0.583 |
0.5582 |
cosine_accuracy@10 |
0.8837 |
0.8998 |
cosine_precision@1 |
0.1884 |
0.1068 |
cosine_precision@3 |
0.1411 |
0.11 |
cosine_precision@5 |
0.1166 |
0.1116 |
cosine_precision@10 |
0.0884 |
0.09 |
cosine_recall@1 |
0.1884 |
0.1068 |
cosine_recall@3 |
0.4233 |
0.3301 |
cosine_recall@5 |
0.583 |
0.5582 |
cosine_recall@10 |
0.8837 |
0.8998 |
cosine_ndcg@10 |
0.4864 |
0.4394 |
cosine_mrr@10 |
0.3658 |
0.2995 |
cosine_map@100 |
0.373 |
0.306 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1884 |
cosine_accuracy@3 |
0.4173 |
cosine_accuracy@5 |
0.567 |
cosine_accuracy@10 |
0.8456 |
cosine_precision@1 |
0.1884 |
cosine_precision@3 |
0.1391 |
cosine_precision@5 |
0.1134 |
cosine_precision@10 |
0.0846 |
cosine_recall@1 |
0.1884 |
cosine_recall@3 |
0.4173 |
cosine_recall@5 |
0.567 |
cosine_recall@10 |
0.8456 |
cosine_ndcg@10 |
0.4722 |
cosine_mrr@10 |
0.3586 |
cosine_map@100 |
0.3677 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1103 |
cosine_accuracy@3 |
0.3218 |
cosine_accuracy@5 |
0.5452 |
cosine_accuracy@10 |
0.8817 |
cosine_precision@1 |
0.1103 |
cosine_precision@3 |
0.1073 |
cosine_precision@5 |
0.109 |
cosine_precision@10 |
0.0882 |
cosine_recall@1 |
0.1103 |
cosine_recall@3 |
0.3218 |
cosine_recall@5 |
0.5452 |
cosine_recall@10 |
0.8817 |
cosine_ndcg@10 |
0.4323 |
cosine_mrr@10 |
0.2959 |
cosine_map@100 |
0.3031 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.1858 |
cosine_accuracy@3 |
0.4206 |
cosine_accuracy@5 |
0.57 |
cosine_accuracy@10 |
0.858 |
cosine_precision@1 |
0.1858 |
cosine_precision@3 |
0.1402 |
cosine_precision@5 |
0.114 |
cosine_precision@10 |
0.0858 |
cosine_recall@1 |
0.1858 |
cosine_recall@3 |
0.4206 |
cosine_recall@5 |
0.57 |
cosine_recall@10 |
0.858 |
cosine_ndcg@10 |
0.4749 |
cosine_mrr@10 |
0.3584 |
cosine_map@100 |
0.367 |
Training Details
Training Dataset
Unnamed Dataset
Evaluation Dataset
Unnamed Dataset
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: steps
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
learning_rate
: 1e-06
num_train_epochs
: 15
warmup_ratio
: 0.2
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: steps
prediction_loss_only
: True
per_device_train_batch_size
: 16
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 1
eval_accumulation_steps
: None
torch_empty_cache_steps
: None
learning_rate
: 1e-06
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 15
max_steps
: -1
lr_scheduler_type
: linear
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.2
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: False
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: None
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: False
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
tp_size
: 0
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: None
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
include_for_metrics
: []
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
eval_on_start
: False
use_liger_kernel
: False
eval_use_gather_object
: False
average_tokens_across_devices
: False
prompts
: None
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch |
Step |
Training Loss |
Validation Loss |
ai-college-validation_cosine_ndcg@10 |
ai-college_modefied-validation_cosine_ndcg@10 |
-1 |
-1 |
- |
- |
0.4208 |
- |
0.3968 |
100 |
0.1371 |
0.0785 |
0.4483 |
- |
0.7937 |
200 |
0.0575 |
0.0357 |
0.4600 |
- |
1.1905 |
300 |
0.0346 |
0.0286 |
0.4640 |
- |
1.5873 |
400 |
0.0313 |
0.0264 |
0.4698 |
- |
1.9841 |
500 |
0.0189 |
0.0256 |
0.4716 |
- |
2.3810 |
600 |
0.021 |
0.0249 |
0.4703 |
- |
2.7778 |
700 |
0.0264 |
0.0247 |
0.4726 |
- |
-1 |
-1 |
- |
- |
0.4252 |
- |
0.3968 |
100 |
0.0132 |
0.0238 |
0.4277 |
- |
0.7937 |
200 |
0.0192 |
0.0221 |
0.4295 |
- |
1.1905 |
300 |
0.0169 |
0.0214 |
0.4316 |
- |
1.5873 |
400 |
0.02 |
0.0200 |
0.4315 |
- |
1.9841 |
500 |
0.0124 |
0.0201 |
0.4315 |
- |
2.3810 |
600 |
0.0152 |
0.0195 |
0.4311 |
- |
2.7778 |
700 |
0.0189 |
0.0193 |
0.4309 |
- |
3.1746 |
800 |
0.0222 |
0.0182 |
0.4307 |
- |
3.5714 |
900 |
0.0158 |
0.0182 |
0.4312 |
- |
3.9683 |
1000 |
0.0144 |
0.0181 |
0.4311 |
- |
4.3651 |
1100 |
0.0237 |
0.0176 |
0.4315 |
- |
4.7619 |
1200 |
0.0132 |
0.0178 |
0.4323 |
- |
-1 |
-1 |
- |
- |
0.4749 |
0.4326 |
0.3968 |
100 |
0.0077 |
0.0175 |
- |
0.4322 |
0.7937 |
200 |
0.0116 |
0.0171 |
- |
0.4320 |
1.1905 |
300 |
0.0093 |
0.0169 |
- |
0.4339 |
1.5873 |
400 |
0.0125 |
0.0160 |
- |
0.4340 |
1.9841 |
500 |
0.0083 |
0.0161 |
- |
0.4340 |
2.3810 |
600 |
0.0105 |
0.0156 |
- |
0.4350 |
2.7778 |
700 |
0.0132 |
0.0155 |
- |
0.4357 |
3.1746 |
800 |
0.0161 |
0.0145 |
- |
0.4362 |
3.5714 |
900 |
0.0113 |
0.0144 |
- |
0.4372 |
3.9683 |
1000 |
0.0112 |
0.0140 |
- |
0.4368 |
4.3651 |
1100 |
0.0185 |
0.0136 |
- |
0.4366 |
4.7619 |
1200 |
0.0101 |
0.0139 |
- |
0.4367 |
5.1587 |
1300 |
0.0118 |
0.0138 |
- |
0.4366 |
5.5556 |
1400 |
0.0145 |
0.0139 |
- |
0.4366 |
5.9524 |
1500 |
0.0104 |
0.0139 |
- |
0.4376 |
6.3492 |
1600 |
0.0105 |
0.0137 |
- |
0.4380 |
6.7460 |
1700 |
0.0125 |
0.0137 |
- |
0.4380 |
-1 |
-1 |
- |
- |
0.4781 |
0.4375 |
0.3968 |
100 |
0.0054 |
0.0135 |
- |
0.4380 |
0.7937 |
200 |
0.0078 |
0.0133 |
- |
0.4374 |
1.1905 |
300 |
0.0053 |
0.0132 |
- |
0.4381 |
1.5873 |
400 |
0.0077 |
0.0127 |
- |
0.4387 |
1.9841 |
500 |
0.0054 |
0.0129 |
- |
0.4374 |
2.3810 |
600 |
0.0067 |
0.0122 |
- |
0.4392 |
2.7778 |
700 |
0.0094 |
0.0120 |
- |
0.4387 |
3.1746 |
800 |
0.0111 |
0.0116 |
- |
0.4360 |
3.5714 |
900 |
0.0079 |
0.0113 |
- |
0.4368 |
3.9683 |
1000 |
0.0081 |
0.0111 |
- |
0.4369 |
4.3651 |
1100 |
0.0134 |
0.0109 |
- |
0.4375 |
4.7619 |
1200 |
0.0072 |
0.0110 |
- |
0.4371 |
5.1587 |
1300 |
0.0091 |
0.0109 |
- |
0.4378 |
5.5556 |
1400 |
0.0121 |
0.0111 |
- |
0.4379 |
5.9524 |
1500 |
0.0081 |
0.0111 |
- |
0.4376 |
6.3492 |
1600 |
0.008 |
0.0110 |
- |
0.4376 |
6.7460 |
1700 |
0.0103 |
0.0109 |
- |
0.4389 |
7.1429 |
1800 |
0.013 |
0.0108 |
- |
0.4397 |
7.5397 |
1900 |
0.0134 |
0.0109 |
- |
0.4385 |
7.9365 |
2000 |
0.0133 |
0.0108 |
- |
0.4398 |
8.3333 |
2100 |
0.0109 |
0.0109 |
- |
0.4389 |
8.7302 |
2200 |
0.0109 |
0.0107 |
- |
0.4386 |
9.1270 |
2300 |
0.0077 |
0.0104 |
- |
0.4395 |
9.5238 |
2400 |
0.0107 |
0.0104 |
- |
0.4387 |
9.9206 |
2500 |
0.0117 |
0.0104 |
- |
0.4393 |
-1 |
-1 |
- |
- |
0.4778 |
0.4392 |
0.3968 |
100 |
0.004 |
0.0104 |
0.4787 |
- |
0.7937 |
200 |
0.0055 |
0.0102 |
0.4785 |
- |
1.1905 |
300 |
0.0035 |
0.0102 |
0.4782 |
- |
1.5873 |
400 |
0.0055 |
0.0100 |
0.4771 |
- |
1.9841 |
500 |
0.0038 |
0.0101 |
0.4770 |
- |
2.3810 |
600 |
0.004 |
0.0097 |
0.4772 |
- |
2.7778 |
700 |
0.0066 |
0.0096 |
0.4797 |
- |
3.1746 |
800 |
0.0073 |
0.0097 |
0.4813 |
- |
3.5714 |
900 |
0.0055 |
0.0092 |
0.4812 |
- |
3.9683 |
1000 |
0.0048 |
0.0095 |
0.4816 |
- |
4.3651 |
1100 |
0.0085 |
0.0093 |
0.4819 |
- |
4.7619 |
1200 |
0.0047 |
0.0091 |
0.4800 |
- |
5.1587 |
1300 |
0.0062 |
0.0091 |
0.4806 |
- |
5.5556 |
1400 |
0.0088 |
0.0091 |
0.4807 |
- |
5.9524 |
1500 |
0.0059 |
0.0091 |
0.4816 |
- |
6.3492 |
1600 |
0.0053 |
0.0092 |
0.4804 |
- |
6.7460 |
1700 |
0.0075 |
0.0092 |
0.4798 |
- |
7.1429 |
1800 |
0.0102 |
0.0090 |
0.4800 |
- |
7.5397 |
1900 |
0.0104 |
0.0090 |
0.4834 |
- |
7.9365 |
2000 |
0.0107 |
0.0088 |
0.4827 |
- |
8.3333 |
2100 |
0.0092 |
0.0088 |
0.4848 |
- |
8.7302 |
2200 |
0.0096 |
0.0086 |
0.4843 |
- |
9.1270 |
2300 |
0.0058 |
0.0084 |
0.4823 |
- |
9.5238 |
2400 |
0.0091 |
0.0084 |
0.4849 |
- |
9.9206 |
2500 |
0.0108 |
0.0083 |
0.4833 |
- |
10.3175 |
2600 |
0.0068 |
0.0083 |
0.4836 |
- |
10.7143 |
2700 |
0.0072 |
0.0083 |
0.4846 |
- |
11.1111 |
2800 |
0.0048 |
0.0082 |
0.4838 |
- |
11.5079 |
2900 |
0.0102 |
0.0082 |
0.4849 |
- |
11.9048 |
3000 |
0.0078 |
0.0082 |
0.4851 |
- |
12.3016 |
3100 |
0.0074 |
0.0082 |
0.4844 |
- |
12.6984 |
3200 |
0.0077 |
0.0081 |
0.4853 |
- |
13.0952 |
3300 |
0.0099 |
0.0081 |
0.4844 |
- |
13.4921 |
3400 |
0.0074 |
0.0081 |
0.4856 |
- |
13.8889 |
3500 |
0.0074 |
0.0081 |
0.4870 |
- |
14.2857 |
3600 |
0.0109 |
0.0081 |
0.4866 |
- |
14.6825 |
3700 |
0.0055 |
0.0081 |
0.4866 |
- |
-1 |
-1 |
- |
- |
0.4864 |
0.4394 |
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 3.4.1
- Transformers: 4.51.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.5.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}