🧠 LLaMA 3.2-1B - MedQA LoRA Merged (Chat v1)

A merged 🧬 LoRA fine-tuned version of meta-llama/Llama-3.2-1B, optimized for medical domain question answering using the MedQA dataset.

💡 Fine-tuned and merged by Team 9 for high-quality semantic answers in the healthcare domain.


📊 Evaluation — BERTScore (on MedQA test set, 100 samples)

Metric Score
Precision 0.8436
Recall 0.8774
F1 Score 0.8598

🛠️ Model Details

  • Base Model: meta-llama/Llama-3.2-1B
  • Dataset: ChakradharS/clean-medqa
  • Fine-tuning: LoRA (merged into base weights)
  • Merged Model Size: Full Causal LM weights (no adapter needed)
  • Tokenizer Padding: Right; pad_token = eos_token
  • LoRA Targets: q_proj, k_proj, v_proj, o_proj, gate_proj, up_proj, down_proj

🚀 Inference Example

from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline

model_id = "ChakradharS/llama3-1b-medqa-lora-merged-chat-v1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype="auto")

pipe = pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    device_map="auto",
    max_new_tokens=100,
    do_sample=False,
    temperature=0.7,
    top_p=0.9,
    top_k=50,
    repetition_penalty=1.1,
    no_repeat_ngram_size=3
)

prompt = "What are the symptoms of a mild heart attack?"
print(pipe(prompt)[0]["generated_text"])
Downloads last month
-
Safetensors
Model size
1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support