Thai Food Ingredients → Dish Prediction
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Language: th
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("thai_food_prediction1")
# Run inference
sentences = [
'กะปิ, ข้าวสวย, หมูสามชั้น, น้ำตาล, กระเทียม, สัปปะรด, กุนเชียง, ไข่ไก่, ไข่เค็ม, ปลาทู, ถั่วฝักยาว, หอมแดง, พริกขี้หนู, มะม่วง, กุ้งแห้ง, ผักชี, ซีอิ้วดำ',
'ข้าวคลุกกะปิ',
'มันบดกระเทียมย่าง',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
thai-food-evalandthai-food-test-eval - Evaluated with
InformationRetrievalEvaluator
| Metric | thai-food-eval | thai-food-test-eval |
|---|---|---|
| cosine_accuracy@1 | 0.625 | 0.6531 |
| cosine_accuracy@3 | 0.8542 | 0.8776 |
| cosine_accuracy@5 | 0.875 | 0.8776 |
| cosine_accuracy@10 | 0.9375 | 0.9388 |
| cosine_precision@1 | 0.625 | 0.6531 |
| cosine_precision@3 | 0.2847 | 0.2925 |
| cosine_precision@5 | 0.175 | 0.1755 |
| cosine_recall@1 | 0.625 | 0.6531 |
| cosine_recall@3 | 0.8542 | 0.8776 |
| cosine_recall@5 | 0.875 | 0.8776 |
| cosine_ndcg@10 | 0.7846 | 0.8137 |
| cosine_mrr@10 | 0.7353 | 0.7727 |
| cosine_map@100 | 0.7383 | 0.7758 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,179 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 4 tokens
- mean: 31.07 tokens
- max: 105 tokens
- min: 5 tokens
- mean: 9.97 tokens
- max: 23 tokens
- Samples:
anchor positive พริกแห้ง, หอมแดง, กระเทียม, น้ำมัน, หมูสับ, น้ำสะอาด, น้ำตาลปี๊บ, น้ำปลา, มะขามเปียกน้ำพริกเผาผัดหมูสับมีพริกแห้ง, หอมแดง, กระเทียม, หมูสับ ทำอะไรได้บ้างน้ำพริกเผาผัดหมูสับน้ำพริกเผาหมูสับ สูตรผัดราดข้าวน้ำพริกเผาผัดหมูสับ - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 48 evaluation samples
- Columns:
anchorandpositive - Approximate statistics based on the first 48 samples:
anchor positive type string string details - min: 12 tokens
- mean: 41.1 tokens
- max: 82 tokens
- min: 4 tokens
- mean: 9.83 tokens
- max: 19 tokens
- Samples:
anchor positive หมูสับ, หนำเลี๊ยบ, ซีอิ๊วขาว, น้ำมันหอย, พริกไทย, กระเทียม, น้ำมัน, ผงปรุงรส, น้ำตาลทรายหมูสับผัดหนำเลี๊ยบใบกะเพรา, เส้นสปาเก็ตตี้, เห็ด, เนื้อหมู, กุ้ง, ปลาหมึก, ผัก, พริก, กระเทียม, ซอสหอยนางรม, ซีอิ๊วขาว, น้ำปลา, ซีอิ๊วดำ, น้ำตาล, น้ำมันสปาเก็ตตี้ขี้เมาทะเลไข่ไก่, กุ้ง, ซีอิ้วขาว, น้ำมัน, พริกไทยไข่เจียวกุ้ง - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 24per_device_eval_batch_size: 24learning_rate: 5e-06num_train_epochs: 7warmup_ratio: 0.1load_best_model_at_end: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 24per_device_eval_batch_size: 24per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-06weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 7max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | Validation Loss | thai-food-eval_cosine_ndcg@10 | thai-food-test-eval_cosine_ndcg@10 |
|---|---|---|---|---|---|
| 0.2 | 10 | 3.0739 | - | - | - |
| 0.4 | 20 | 2.4736 | - | - | - |
| 0.6 | 30 | 2.0271 | - | - | - |
| 0.8 | 40 | 1.6695 | - | - | - |
| 1.0 | 50 | 1.516 | 1.6674 | 0.6194 | - |
| 1.2 | 60 | 1.3391 | - | - | - |
| 1.4 | 70 | 1.2024 | - | - | - |
| 1.6 | 80 | 1.2809 | - | - | - |
| 1.8 | 90 | 1.1296 | - | - | - |
| 2.0 | 100 | 0.8932 | 1.2661 | 0.6572 | - |
| 2.2 | 110 | 0.9307 | - | - | - |
| 2.4 | 120 | 0.7843 | - | - | - |
| 2.6 | 130 | 0.9402 | - | - | - |
| 2.8 | 140 | 0.8192 | - | - | - |
| 3.0 | 150 | 0.9192 | 1.0902 | 0.7233 | - |
| 3.2 | 160 | 0.6749 | - | - | - |
| 3.4 | 170 | 0.641 | - | - | - |
| 3.6 | 180 | 0.763 | - | - | - |
| 3.8 | 190 | 0.8294 | - | - | - |
| 4.0 | 200 | 0.6798 | 0.9843 | 0.7657 | - |
| 4.2 | 210 | 0.7125 | - | - | - |
| 4.4 | 220 | 0.5714 | - | - | - |
| 4.6 | 230 | 0.5759 | - | - | - |
| 4.8 | 240 | 0.5941 | - | - | - |
| 5.0 | 250 | 0.5246 | 0.9562 | 0.7715 | - |
| 5.2 | 260 | 0.6761 | - | - | - |
| 5.4 | 270 | 0.5069 | - | - | - |
| 5.6 | 280 | 0.5447 | - | - | - |
| 5.8 | 290 | 0.5582 | - | - | - |
| 6.0 | 300 | 0.493 | 0.9472 | 0.7772 | - |
| 6.2 | 310 | 0.4803 | - | - | - |
| 6.4 | 320 | 0.4909 | - | - | - |
| 6.6 | 330 | 0.4831 | - | - | - |
| 6.8 | 340 | 0.4818 | - | - | - |
| 7.0 | 350 | 0.4934 | 0.9471 | 0.7846 | - |
| -1 | -1 | - | - | - | 0.8137 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 2.14.4
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 1
Model tree for Chanisorn/thai-food-mpnet-new-v8
Evaluation results
- Cosine Accuracy@1 on thai food evalself-reported0.625
- Cosine Accuracy@3 on thai food evalself-reported0.854
- Cosine Accuracy@5 on thai food evalself-reported0.875
- Cosine Accuracy@10 on thai food evalself-reported0.938
- Cosine Precision@1 on thai food evalself-reported0.625
- Cosine Precision@3 on thai food evalself-reported0.285
- Cosine Precision@5 on thai food evalself-reported0.175
- Cosine Recall@1 on thai food evalself-reported0.625
- Cosine Recall@3 on thai food evalself-reported0.854
- Cosine Recall@5 on thai food evalself-reported0.875