toukmaji-flanigan-gem25
Collection
Models and datasets from ACL GEM paper (Toukmaji and Flanigan 2025)
•
49 items
•
Updated
•
1
@misc{toukmaji2025prompttranslatefinetunereinitialize,
title={Prompt, Translate, Fine-Tune, Re-Initialize, or Instruction-Tune? Adapting LLMs for In-Context Learning in Low-Resource Languages},
author={Christopher Toukmaji and Jeffrey Flanigan},
year={2025},
eprint={2506.19187},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.19187},
}
This model is a fine-tuned version of final_models/focus_hau_llama_after_focus_reinit on the mc4 ha dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
6.1415 | 1.0 | 24415 | 5.9857 |
6.0396 | 2.0 | 48830 | 5.1594 |
5.7043 | 3.0 | 73245 | 4.7695 |
4.4154 | 4.0 | 97660 | 4.4395 |
2.2977 | 5.0 | 122075 | 4.3200 |
1.6013 | 6.0 | 146490 | 4.5683 |