urlbert
					Collection
				
A collection of bert-based models for URL analysis
					• 
				10 items
				• 
				Updated
					
				•
					
					2
This is a very small version of BERT, designed to categorize links into phishing and non-phishing links
Model size 6.53M params
Tensor type F32
Example:
from transformers import BertTokenizerFast, BertForSequenceClassification, pipeline
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Используемое устройство: {device}")
model_path = "./urlbert-tiny-v1-phishing-classifier"
tokenizer = BertTokenizerFast.from_pretrained(model_path)
model = BertForSequenceClassification.from_pretrained(model_path)
model.to(device)
classifier = pipeline(
    "text-classification",
    model=model,
    tokenizer=tokenizer,
    device=0 if torch.cuda.is_available() else -1,
    return_all_scores=True
)
test_urls = [
    "en.wikipedia.org/wiki/",
    "facebook-profile.km6.net"
]
for url in test_urls:
    results = classifier(url)
    print(f"\nURL: {url}")
    for result in results[0]:
        label = result['label']
        score = result['score']
        print(f"Класс: {label}, вероятность: {score:.4f}")
        
Output:
Используемое устройство: cuda
URL: en.wikipedia.org/wiki/
Класс: good, вероятность: 0.9995
Класс: phish, вероятность: 0.0005
URL: facebook-profile.km6.net
Класс: good, вероятность: 0.0012
Класс: phish, вероятность: 0.9988
Base model
CrabInHoney/urlbert-tiny-base-v1