ChemMRL
Collection
SMILES Matryoshka Representation Learning Embedding Transformer
•
5 items
•
Updated
•
1
This is a trained Chem-MRL sentence-transformers model. It maps SMILES to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, database indexing, molecular classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: RobertaModel (ChemBERTa)
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Derify/ChemMRL-alpha")
# Run inference
sentences = [
'CCO',
"CC(C)O",
'CC(=O)O',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Manny Cortes ([email protected])