metadata
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-finetuned-ner
results: []
bert-finetuned-ner
This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0602
- Precision: 0.9335
- Recall: 0.9517
- F1: 0.9425
- Accuracy: 0.9864
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|---|---|---|---|---|---|---|---|
| 0.0852 | 1.0 | 1756 | 0.0685 | 0.9208 | 0.9367 | 0.9287 | 0.9829 |
| 0.0336 | 2.0 | 3512 | 0.0612 | 0.9281 | 0.9495 | 0.9387 | 0.9856 |
| 0.0181 | 3.0 | 5268 | 0.0602 | 0.9335 | 0.9517 | 0.9425 | 0.9864 |
Framework versions
- Transformers 4.23.1
- Pytorch 1.12.1+cu113
- Tokenizers 0.13.1