classifier-chapter4-modernbert
This model is a fine-tuned version of answerdotai/ModernBERT-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2692
- Accuracy: 0.9139
- F1: 0.9144
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 0.3458 | 1.0 | 313 | 0.2765 | 0.9016 | 0.9012 |
| 0.1553 | 2.0 | 626 | 0.2692 | 0.9139 | 0.9144 |
| 0.069 | 3.0 | 939 | 0.4291 | 0.9120 | 0.9115 |
| 0.022 | 4.0 | 1252 | 0.5629 | 0.9129 | 0.9123 |
| 0.0066 | 5.0 | 1565 | 0.5950 | 0.9229 | 0.9229 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 2
Model tree for Emil7018/classifier-chapter4-modernbert
Base model
answerdotai/ModernBERT-base