Improve model card: Add pipeline tag, library name, project page link, and sample usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,19 +1,22 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
| 2 |
language:
|
| 3 |
- en
|
| 4 |
-
tags:
|
| 5 |
-
- audio-text-to-audio-text
|
| 6 |
-
- speech-understanding
|
| 7 |
-
- audio
|
| 8 |
-
- chat
|
| 9 |
license: apache-2.0
|
| 10 |
-
datasets:
|
| 11 |
-
- custom
|
| 12 |
metrics:
|
| 13 |
- wer
|
| 14 |
- bleu
|
| 15 |
- AIR-Bench
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
---
|
|
|
|
| 17 |
<div align="center">
|
| 18 |
<h1>
|
| 19 |
EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
|
|
@@ -21,25 +24,50 @@ metrics:
|
|
| 21 |
</div>
|
| 22 |
|
| 23 |
<p align="center">
|
| 24 |
-
<font size="3"><a href="https://github.com/FreedomIntelligence/EchoX">🐈⬛ Github</a> | <a href="https://arxiv.org/abs/2509.09174">📃 Paper</a> | <a href="https://huggingface.co/spaces/FreedomIntelligence/EchoX">🚀 Space</a> </font>
|
| 25 |
</p>
|
| 26 |
|
| 27 |
## Model Description
|
| 28 |
-
EchoX is a Speech-to-Speech large language model that addresses the acoustic-semantic gap. By introducing **Echo Training**, EchoX integrates semantic and acoustic learning, mitigating the degradation of reasoning ability observed in existing speech-based LLMs. It is trained on only
|
| 29 |
|
| 30 |
### Key Features
|
| 31 |
<div>
|
| 32 |
<ul>
|
| 33 |
<font size="3"><li>Mitigates Acoustic-Semantic Gap in Speech-to-Speech LLMs</li></font>
|
| 34 |
<font size="3"><li>Introduces Echo Training with a Novel Three-Stage Pipeline (S2T, T2C, Echo)</li></font>
|
| 35 |
-
<font size="3"><li>Trained on Only
|
| 36 |
<font size="3"><li>Achieves State-of-the-Art Performance in Knowledge-Based QA Benchmarks</li></font>
|
| 37 |
<font size="3"><li>Preserves Reasoning and Knowledge Abilities for Interactive Speech Tasks</li></font>
|
| 38 |
</ul>
|
| 39 |
</div>
|
| 40 |
|
| 41 |
-
## Usage
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
# <span>📖 Citation</span>
|
| 45 |
```
|
|
|
|
| 1 |
---
|
| 2 |
+
datasets:
|
| 3 |
+
- custom
|
| 4 |
language:
|
| 5 |
- en
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
license: apache-2.0
|
|
|
|
|
|
|
| 7 |
metrics:
|
| 8 |
- wer
|
| 9 |
- bleu
|
| 10 |
- AIR-Bench
|
| 11 |
+
pipeline_tag: audio-to-audio
|
| 12 |
+
tags:
|
| 13 |
+
- audio-text-to-audio-text
|
| 14 |
+
- speech-understanding
|
| 15 |
+
- audio
|
| 16 |
+
- chat
|
| 17 |
+
library_name: transformers
|
| 18 |
---
|
| 19 |
+
|
| 20 |
<div align="center">
|
| 21 |
<h1>
|
| 22 |
EchoX: Towards Mitigating Acoustic-Semantic Gap via Echo Training for Speech-to-Speech LLMs
|
|
|
|
| 24 |
</div>
|
| 25 |
|
| 26 |
<p align="center">
|
| 27 |
+
<font size="3"><a href="https://github.com/FreedomIntelligence/EchoX">🐈⬛ Github</a> | <a href="https://arxiv.org/abs/2509.09174">📃 Paper</a> | <a href="https://freedomintelligence.github.io/EchoX">🌐 Project Page</a> | <a href="https://huggingface.co/spaces/FreedomIntelligence/EchoX">🚀 Space</a> </font>
|
| 28 |
</p>
|
| 29 |
|
| 30 |
## Model Description
|
| 31 |
+
EchoX is a Speech-to-Speech large language model that addresses the acoustic-semantic gap. By introducing **Echo Training**, EchoX integrates semantic and acoustic learning, mitigating the degradation of reasoning ability observed in existing speech-based LLMs. It is trained on only 6k hours of data while delivering state-of-the-art results in knowledge-based question answering and speech interaction tasks.
|
| 32 |
|
| 33 |
### Key Features
|
| 34 |
<div>
|
| 35 |
<ul>
|
| 36 |
<font size="3"><li>Mitigates Acoustic-Semantic Gap in Speech-to-Speech LLMs</li></font>
|
| 37 |
<font size="3"><li>Introduces Echo Training with a Novel Three-Stage Pipeline (S2T, T2C, Echo)</li></font>
|
| 38 |
+
<font size="3"><li>Trained on Only 6k Hours of Curated Data, Ensuring Efficiency</li></font>
|
| 39 |
<font size="3"><li>Achieves State-of-the-Art Performance in Knowledge-Based QA Benchmarks</li></font>
|
| 40 |
<font size="3"><li>Preserves Reasoning and Knowledge Abilities for Interactive Speech Tasks</li></font>
|
| 41 |
</ul>
|
| 42 |
</div>
|
| 43 |
|
| 44 |
+
## Sample Usage
|
| 45 |
+
To set up your environment and run inference, follow these steps from the [GitHub repository](https://github.com/FreedomIntelligence/EchoX):
|
| 46 |
+
|
| 47 |
+
First, clone the repository, set up the environment, and install dependencies:
|
| 48 |
+
```bash
|
| 49 |
+
git clone https://github.com/FreedomIntelligence/EchoX.git
|
| 50 |
+
cd EchoX
|
| 51 |
+
conda create -n echox python=3.10 pip=24.0
|
| 52 |
+
conda activate echox
|
| 53 |
+
pip install -r requirements.txt
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
Next, download the models:
|
| 57 |
+
```bash
|
| 58 |
+
pip install -U huggingface_hub
|
| 59 |
+
hf download --resume-download FreedomIntelligence/EchoX-8B --local-dir EchoX-8B
|
| 60 |
+
hf download --resume-download openai/whisper-large-v3 --local-dir whisper-large-v3
|
| 61 |
+
```
|
| 62 |
+
|
| 63 |
+
Finally, run inference on a test case, or start the Gradio web interface:
|
| 64 |
+
```bash
|
| 65 |
+
python demo.py
|
| 66 |
+
# Alternatively, start the Gradio web interface:
|
| 67 |
+
# python app.py
|
| 68 |
+
# To use a specific GPU:
|
| 69 |
+
# CUDA_VISIBLE_DEVICES=1 python app.py
|
| 70 |
+
```
|
| 71 |
|
| 72 |
# <span>📖 Citation</span>
|
| 73 |
```
|