SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("GPTasty/TastyRecipesEmbedder")
# Run inference
sentences = [
'NAME: Spinach with Raisins and Pine Nuts\n\nCATEGORY: Fruit\n\nKEYWORDS: Vegetable, Nuts, Low Cholesterol, Healthy, < 30 Mins, Stove Top\n\nTOOLS: grill, pot\n\nINGREDIENTS: fresh spinach, pine nuts, salt, raisins, olive oil, lemon juice\n\nINSTRUCTIONS: \nClean the spinach thoroughly.\nGrill the pine nuts until golden brown, watching carefully so as not to burn.\nBring a pot of salted water to the boil and toss in raisins and spinach.\nDrain as soon as spinach goes limp.\ntoss in olive oil and lemon juice, and scatter with the grilled pine nuts.',
'NAME: Dried Apricots with Pistachios and Almonds\n\nCATEGORY: Fruit\n\nKEYWORDS: Dried Fruit, Nuts, Low Cholesterol, Healthy, < 30 Mins, Stove Top, Vegan\n\nTOOLS: grill, pot\n\nINGREDIENTS: dried apricots, pistachios, salt, slivered almonds, olive oil, orange juice\n\nINSTRUCTIONS:\nSoak the dried apricots in warm water for 10 minutes to soften them.\nGrill the pistachios until lightly toasted, being careful not to burn them.\nBring a pot of salted water to the boil and add the softened apricots.\nDrain immediately after the apricots plump up slightly.\nToss with olive oil and orange juice, then sprinkle with the grilled pistachios and slivered almonds.',
'NAME: Smoky Chipotle Turkey Meatloaf\n\nCATEGORY: Meat\n\nKEYWORDS: < 60 Mins, Spicy, Oven, Comfort Food\n\nTOOLS: frying pan, meat thermometer, oven, loaf pan\n\nINGREDIENTS: bacon, yellow onion, green bell pepper, chipotle powder, garlic powder, dried oregano, salt, ground mustard, smoked paprika, chili powder, tomato paste, chicken broth, eggs, ground turkey\n\nINSTRUCTIONS:\nPreheat oven to 425 degrees.\nCook bacon in frying pan, remove, drain, and chop.\nLeave drippings in pan and saute (but do not brown) onion and green pepper.\nAdd chipotle powder, garlic powder, oregano, salt, mustard, smoked paprika, and chili powder.\nCook for 8 minutes.\nRemove pan from heat and add tomato paste and chicken broth.\nMix bread crumbs with eggs and add to ground turkey.\nAdd spice mixture and bacon to turkey mixture and mix gently.\nPlace mixture in two or three 8 x 4 inch individual loaf pans.\nCook until done, about 35 to 45 minutes, or until internal temperature reaches 165 degrees on a meat thermometer.\nLet rest for 10 minutes before slicing.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 121,408 training samples
- Columns:
sentence_0
andsentence_1
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 type string string details - min: 45 tokens
- mean: 185.8 tokens
- max: 384 tokens
- min: 59 tokens
- mean: 222.58 tokens
- max: 384 tokens
- Samples:
sentence_0 sentence_1 NAME: Homemade Honey Mustard
CATEGORY: Sauces
KEYWORDS: Low Protein, < 15 Mins, Easy
TOOLS:
INGREDIENTS: Dijon mustard, sour cream, honey, Worcestershire sauce
INSTRUCTIONS:
Mix well, enjoy.NAME: Creamy Maple Mustard Sauce
CATEGORY: Sauces
KEYWORDS: Low Protein, < 15 Mins, Easy, Gluten-Free
TOOLS:
INGREDIENTS: Whole grain mustard, Greek yogurt, maple syrup, apple cider vinegar
INSTRUCTIONS: Combine all ingredients in a bowl and mix until well combined. Refrigerate for at least 10 minutes before serving to allow flavors to meld. Enjoy with pretzels or veggies.NAME: Baby Greens With Hazelnut Parmesan Crisps
CATEGORY: Greens
KEYWORDS: Vegetable, High In..., < 30 Mins
TOOLS: parchment paper, mixer, whisk, oven, baking sheet
INGREDIENTS: parmesan cheese, hazelnuts, lemon juice, olive oil, maple syrup, lettuce, prosciutto
INSTRUCTIONS:
Preheat oven to 350°F Line a baking sheet with parchment paper.
Combine Parmesan and hazelnuts. Drop 12 spoonfuls of Parmesan mixture onto baking sheet 3 inches apart.
Bake crisps for 8 to 10 minutes, or until golden. Cool on baking sheet.
Whisk together lemon juice, oil and maple syrup. Season with salt and pepper.
Toss lettuce with vinaigrette and pile on individual plates.
Coil each slice of prosciutto into a rose shape and set a rose in center of each mound of greens. Garnish each serving with two Parmesan crisps.NAME: Spinach Salad with Almond Manchego Crisps
CATEGORY: Greens
KEYWORDS: Vegetable, High In..., < 30 Mins, Gluten-Free
TOOLS: parchment paper, mixer, whisk, oven, baking sheet
INGREDIENTS: manchego cheese, almonds, lime juice, avocado oil, honey, spinach, serrano ham
INSTRUCTIONS:
Preheat oven to 375°F. Line a baking sheet with parchment paper.
Combine Manchego cheese and chopped almonds. Drop 12 spoonfuls of the Manchego mixture onto the baking sheet, spacing them 3 inches apart.
Bake crisps for 6 to 8 minutes, or until golden brown. Let cool on the baking sheet.
Whisk together lime juice, avocado oil, and honey. Season with salt and a pinch of red pepper flakes.
Toss spinach with the vinaigrette and arrange on individual plates.
Roll each slice of serrano ham into a flower shape and place one in the center of each spinach mound. Garnish each serving with two Manchego crisps.NAME: Classic Delicious New York Cheesecake
CATEGORY: Cheesecake
KEYWORDS: Dessert, Weeknight, For Large Groups, < 4 Hours
TOOLS: pan, mixing bowl, warm oven, mixer, refrigerator
INGREDIENTS: graham cracker crumbs, cream cheese, eggs, sour cream, butter, sugar, vanilla
INSTRUCTIONS:
Preheat oven to 450 degrees.
To make the crust, mix graham crackers crumbs, butter, and 2 tablespoons of sugar in bowl.
Press mixture in bottom and sides of 9 inch springform pan.
In mixing bowl, beat cream cheese and remaining sugar for 2 minutes.
Add eggs and vanilla to mixture and mix until well blended.
Then stir or fold in sour cream.
Pour mixture in crust filled pan and bake for 10 minutes.
Then reduce to 200 degrees to bake for 45 minutes.
From here the cheese cake just needs to be chilled, but I recommend doing the following step if you have a few extra hours- Leave in warm oven, once you turn it off but leave door slightly open.
Let sit and cool for 2 hours and remove from oven.
Remove sides ...NAME: Lemon Ricotta Cheesecake Delight
CATEGORY: Cheesecake
KEYWORDS: Dessert, Weeknight, For Large Groups, < 4 Hours, Citrus
TOOLS: pan, mixing bowl, warm oven, mixer, refrigerator, zester
INGREDIENTS: gluten-free graham cracker crumbs, ricotta cheese, eggs, Greek yogurt, butter, sugar, vanilla extract, lemon zest, lemon juice
INSTRUCTIONS:
Preheat oven to 450 degrees Fahrenheit.
To make the crust, mix gluten-free graham cracker crumbs, melted butter, and 2 tablespoons of sugar in bowl.
Press mixture firmly in bottom and partially up the sides of a 9 inch springform pan.
In a large mixing bowl, beat ricotta cheese and remaining sugar for 3 minutes until light and fluffy.
Add eggs, vanilla extract, lemon zest, and lemon juice to mixture; mix until just combined. Avoid overmixing.
Gently fold in Greek yogurt.
Pour mixture into the prepared crust-lined pan and bake for 12 minutes.
Reduce oven temperature to 225 degrees Fahrenheit and continue baking for 40 minutes, or until the edge... - Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 64per_device_eval_batch_size
: 64fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 3max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.2636 | 500 | 0.0583 |
0.5271 | 1000 | 0.0017 |
0.7907 | 1500 | 0.001 |
1.0543 | 2000 | 0.0008 |
1.3179 | 2500 | 0.0005 |
1.5814 | 3000 | 0.0006 |
1.8450 | 3500 | 0.0004 |
2.1086 | 4000 | 0.0005 |
2.3722 | 4500 | 0.0003 |
2.6357 | 5000 | 0.0003 |
2.8993 | 5500 | 0.0003 |
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 4.0.1
- Transformers: 4.50.2
- PyTorch: 2.4.0
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for GPTasty/TastyRecipesEmbedder
Base model
sentence-transformers/all-mpnet-base-v2