Update: Add custom NPKPredictionModel implementation
Browse files- config.json +5 -4
- modeling_npk.py +13 -13
config.json
CHANGED
|
@@ -2,7 +2,8 @@
|
|
| 2 |
"model_type": "npk",
|
| 3 |
"architectures": ["NPKPredictionModel"],
|
| 4 |
"auto_map": {
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
}
|
| 8 |
-
|
|
|
|
|
|
| 2 |
"model_type": "npk",
|
| 3 |
"architectures": ["NPKPredictionModel"],
|
| 4 |
"auto_map": {
|
| 5 |
+
"AutoConfig": "modeling_npk.NPKConfig",
|
| 6 |
+
"AutoModel": "modeling_npk.NPKPredictionModel"
|
| 7 |
+
},
|
| 8 |
+
"trust_remote_code": true
|
| 9 |
+
}
|
modeling_npk.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
|
| 2 |
import pickle
|
| 3 |
import pandas as pd
|
| 4 |
from transformers import PreTrainedModel, PretrainedConfig
|
|
@@ -17,6 +16,18 @@ class NPKPredictionModel(PreTrainedModel):
|
|
| 17 |
super().__init__(config)
|
| 18 |
self.xgb_model = None
|
| 19 |
self.label_encoder = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
def forward(self, inputs):
|
| 22 |
# Preprocess inputs
|
|
@@ -48,15 +59,4 @@ class NPKPredictionModel(PreTrainedModel):
|
|
| 48 |
config = NPKConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 49 |
|
| 50 |
model = cls(config)
|
| 51 |
-
|
| 52 |
-
# Load the XGBoost model and label encoder
|
| 53 |
-
xgb_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="npk_prediction_model.pkl")
|
| 54 |
-
le_path = hf_hub_download(repo_id=pretrained_model_name_or_path, filename="label_encoder.pkl")
|
| 55 |
-
|
| 56 |
-
with open(xgb_path, 'rb') as f:
|
| 57 |
-
model.xgb_model = pickle.load(f)
|
| 58 |
-
|
| 59 |
-
with open(le_path, 'rb') as f:
|
| 60 |
-
model.label_encoder = pickle.load(f)
|
| 61 |
-
|
| 62 |
-
return model
|
|
|
|
|
|
|
| 1 |
import pickle
|
| 2 |
import pandas as pd
|
| 3 |
from transformers import PreTrainedModel, PretrainedConfig
|
|
|
|
| 16 |
super().__init__(config)
|
| 17 |
self.xgb_model = None
|
| 18 |
self.label_encoder = None
|
| 19 |
+
self._load_models()
|
| 20 |
+
|
| 21 |
+
def _load_models(self):
|
| 22 |
+
# Load the XGBoost model and label encoder
|
| 23 |
+
xgb_path = hf_hub_download(repo_id=self.config._name_or_path, filename="npk_prediction_model.pkl")
|
| 24 |
+
le_path = hf_hub_download(repo_id=self.config._name_or_path, filename="label_encoder.pkl")
|
| 25 |
+
|
| 26 |
+
with open(xgb_path, 'rb') as f:
|
| 27 |
+
self.xgb_model = pickle.load(f)
|
| 28 |
+
|
| 29 |
+
with open(le_path, 'rb') as f:
|
| 30 |
+
self.label_encoder = pickle.load(f)
|
| 31 |
|
| 32 |
def forward(self, inputs):
|
| 33 |
# Preprocess inputs
|
|
|
|
| 59 |
config = NPKConfig.from_pretrained(pretrained_model_name_or_path, **kwargs)
|
| 60 |
|
| 61 |
model = cls(config)
|
| 62 |
+
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|