DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation
Model Description
DM1 is a novel flow matching framework for robotic manipulation that achieves one-step inference while maintaining high success rates. The model prevents representation collapse through dispersive regularization while achieving 20-40ร faster inference compared to diffusion baselines.
Key Features
- โก Single-Step Inference: 0.07s per timestep (vs. 2-3.5s for diffusion)
- ๐ฏ High Success Rates: 10-20% improvement over diffusion baselines
- ๐ง Dispersive Loss Family: InfoNCE, Cosine, Hinge regularizers
- ๐๏ธ Vision-Ready: Multi-view RGB observation support
- ๐ค Real Robot Validated: Tested on Franka-Emika-Panda
Model Variants
This repository contains pretrained weights for multiple configurations:
| Variant | Description | Best For |
|---|---|---|
| ShortCut + InfoNCE L2 | Flow matching with L2-based dispersive loss | General tasks |
| ShortCut + InfoNCE Cosine | Flow matching with cosine similarity | Vision tasks |
| ShortCut + Hinge | Flow matching with hinge loss | Robust control |
| ShortCut + Covariance | Flow matching with covariance regularization | Feature diversity |
| MeanFlow variants | Mean flow baseline and dispersive versions | Fast inference |
| ReFlow variants | Reflow baseline | Iterative refinement |
Supported Tasks
- Robomimic (RGB): lift, can, square, transport
- Franka Kitchen: partial, complete, mixed
- D3IL: avoiding, pushing, sorting
Quick Start
Installation
git clone https://github.com/Guowei-Zou/dm1-release.git
cd dm1-release
conda create -n dm1 python=3.8 -y
conda activate dm1
pip install -e .
Download Checkpoints
from huggingface_hub import hf_hub_download
# Download specific checkpoint
checkpoint = hf_hub_download(
repo_id="zougw2025/dm1-pretrained",
filename="checkpoints/w_0p1/can/can_w0p1_05_shortcut_infonce_cosine.pt"
)
Evaluation
python script/run.py \
--config-dir=cfg/robomimic/eval/can \
--config-name=eval_shortcut_mlp_img \
base_policy_path=checkpoints/w_0p1/can/can_w0p1_05_shortcut_infonce_cosine.pt
Performance Metrics
| Task | Baseline (32-128 steps) | DM1 (5 steps) | Improvement | Speedup |
|---|---|---|---|---|
| Lift | ~85% | 99% | +14% | 20-40ร |
| Can | Variable | High | +10-20% | 20-40ร |
| Square | Moderate | Improved | +15-25% | 20-40ร |
| Transport | Low | High | +20-30% | 20-40ร |
Citation
If you use DM1 in your research, please cite:
@misc{zou2025dm1meanflowdispersiveregularization,
title={DM1: MeanFlow with Dispersive Regularization for 1-Step Robotic Manipulation},
author={Guowei Zou and Haitao Wang and Hejun Wu and Yukun Qian and Yuhang Wang and Weibing Li},
year={2025},
eprint={2510.07865},
archivePrefix={arXiv},
primaryClass={cs.RO},
url={https://arxiv.org/abs/2510.07865},
}
License
This project is licensed under the Apache License 2.0.
Acknowledgments
DM1 builds upon prior work including Diffusion Policy, ReinFlow, MeanFlow, FlowPolicy, D2PPO, and ฯ0.5.
Contact
- Author: Guowei Zou
- GitHub: dm1-release
- Project Page: https://guowei-zou.github.io/dm1/