|
--- |
|
language: en |
|
license: apache-2.0 |
|
tags: |
|
- vision |
|
- image-classification |
|
- document-classification |
|
- knowledge-distillation |
|
- vit |
|
- rvl-cdip |
|
- tiny-model |
|
- distilled-model |
|
datasets: |
|
- rvl_cdip |
|
metrics: |
|
- accuracy |
|
pipeline_tag: image-classification |
|
|
|
--- |
|
|
|
# ViT-Tiny Classifier for RVL-CDIP Document Classification (Distilled) |
|
|
|
This model is a compressed Vision Transformer (ViT-Tiny) trained using knowledge distillation from DiT-Large on the RVL-CDIP dataset for document image classification. |
|
This model was developed as part of a **research internship at the Laboratory of Complex Systems, Ecole Centrale Casablanca** |
|
## Model Details |
|
|
|
- **Student Model**: ViT-Tiny (Vision Transformer) |
|
- **Teacher Model**: microsoft/dit-large-finetuned-rvlcdip |
|
- **Training Method**: Knowledge Distillation |
|
- **Parameters**: ~5.5M (55x smaller than teacher) |
|
- **Dataset**: RVL-CDIP (320k document images, 16 classes) |
|
- **Task**: Document Image Classification |
|
- **Accuracy**: 0.9210 |
|
- **Compression Ratio**: ~55x parameter reduction from teacher model |
|
|
|
## Document Classes |
|
|
|
The model classifies documents into 16 categories: |
|
|
|
1. **letter** - Personal or business correspondence |
|
2. **form** - Structured forms and applications |
|
3. **email** - Email communications |
|
4. **handwritten** - Handwritten documents |
|
5. **advertisement** - Marketing materials and ads |
|
6. **scientific_report** - Research reports and studies |
|
7. **scientific_publication** - Academic papers and journals |
|
8. **specification** - Technical specifications |
|
9. **file_folder** - File folders and organizational documents |
|
10. **news_article** - News articles and press releases |
|
11. **budget** - Financial budgets and planning documents |
|
12. **invoice** - Bills and invoices |
|
13. **presentation** - Presentation slides |
|
14. **questionnaire** - Surveys and questionnaires |
|
15. **resume** - CVs and resumes |
|
16. **memo** - Internal memos and notices |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
from PIL import Image |
|
|
|
# Load model |
|
processor = AutoImageProcessor.from_pretrained("HAMMALE/vit-tiny-classifier-rvlcdip") |
|
model = AutoModelForImageClassification.from_pretrained("HAMMALE/vit-tiny-classifier-rvlcdip") |
|
|
|
# Load and classify an image |
|
image = Image.open("path_to_your_document_image.jpg") |
|
inputs = processor(image, return_tensors="pt") |
|
|
|
# Get predictions |
|
outputs = model(**inputs) |
|
predicted_class_id = outputs.logits.argmax(-1).item() |
|
|
|
# Get class names |
|
class_names = [ |
|
"letter", "form", "email", "handwritten", "advertisement", |
|
"scientific_report", "scientific_publication", "specification", |
|
"file_folder", "news_article", "budget", "invoice", |
|
"presentation", "questionnaire", "resume", "memo" |
|
] |
|
|
|
predicted_class = class_names[predicted_class_id] |
|
print("Predicted class:", predicted_class) |
|
``` |
|
|
|
## Performance |
|
|
|
| Metric | Value | |
|
|--------|-------| |
|
| Accuracy | 0.9210 | |
|
| Parameters | ~5.5M | |
|
| Model Size | ~22 MB | |
|
| Input Size | 224x224 pixels | |
|
|
|
## Training Details |
|
|
|
- **Student Architecture**: Vision Transformer (ViT-Tiny) |
|
- **Teacher Model**: microsoft/dit-large-finetuned-rvlcdip |
|
- **Distillation Method**: Knowledge Distillation |
|
- **Input Resolution**: 224x224 |
|
- **Preprocessing**: Standard ImageNet normalization |
|
- **Framework**: Transformers/PyTorch |
|
- **Distillation Benefits**: Maintains high accuracy with 55x fewer parameters |
|
|
|
## Dataset |
|
|
|
The RVL-CDIP (Ryerson Vision Lab Complex Document Information Processing) dataset contains: |
|
- 400,000 grayscale document images |
|
- 16 document categories |
|
- Images collected from truth tobacco industry documents |
|
- Standard train/validation/test splits |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@misc{hammale2025vit_tiny_rvlcdip_distilled, |
|
title={ViT-Tiny Classifier for RVL-CDIP Document Classification (Distilled)}, |
|
author={Hammale, Mourad}, |
|
year={2025}, |
|
howpublished={\url{https://huggingface.co/HAMMALE/vit-tiny-classifier-rvlcdip}}, |
|
note={Knowledge distilled from microsoft/dit-large-finetuned-rvlcdip} |
|
} |
|
``` |
|
|
|
## Acknowledgments |
|
|
|
This model was created by HAMMALE (Mourad) through knowledge distillation from the larger DiT-Large model (microsoft/dit-large-finetuned-rvlcdip), achieving significant compression while maintaining competitive performance for document classification tasks. |
|
|
|
## License |
|
|
|
This model is released under the Apache 2.0 license. |