Kelp-RGBI: Kelp Segmentation Model for RGB+NIR Drone Imagery
Model Type: ONNX Semantic Segmentation
Application: Kelp forest detection in 4-band RGB+NIR aerial imagery
Input: 4-band imagery (Red, Green, Blue, Near-Infrared)
Output: Binary segmentation mask (kelp vs. non-kelp)
Model Description
The Kelp-RGBI model is a deep learning semantic segmentation model specifically trained for detecting kelp forests in 4-band RGB+NIR drone imagery. This model leverages the additional Near-Infrared band to improve kelp detection accuracy, particularly in challenging water conditions and for submerged kelp detection.
Key Features:
- Optimized for 4-band RGB+NIR imagery from multispectral drones
- Min-max normalization for robust performance across different sensors
- Efficient ONNX format for cross-platform deployment
- Enhanced accuracy through NIR spectral information
Model Details
- Version: 20231214
- Input Channels: 4 (RGB + Near-Infrared)
- Input Size: Dynamic tiling (recommended: 2048x2048 tiles)
- Normalization: Min-max normalization
- Output: Multi-class segmentation (0: background, 1: giant kelp, 2: bull kelp)
- Format: ONNX
Normalization Parameters
The model uses min-max normalization applied per image:
This means each input image is normalized to [0, 1] range using: (pixel - band_min_value) / (band_max_value - band_min_value)
Usage
1. Using kelp-o-matic CLI (recommended)
For command-line usage:
# Install kelp-o-matic
pip install git+https://github.com/HakaiInstitute/kelp-o-matic@dev
# List available models
kom list-models
# Run kelp species segmentation on RGB+NIR drone imagery
kom segment \
--model kelp-rgbi \
--input /path/to/rgbi_drone_image.tif \
--output /path/to/kelp_species_segmentation.tif \
--batch-size 6 \
--crop-size 2048 \
--blur-kernel 5 \
--morph-kernel 3 \
-b 1 \ # Specify -b flags to rearrange bands to Red, Green, Blue, NIR order
-b 2 \
-b 3 \
-b 4
# Use specific model version
kom segment \
--model kelp-rgbi \
--version 20231214 \
--input image.tif \
--output result.tif
# For high-resolution multispectral imagery
kom segment \
--model kelp-rgbi \
--input high_res_multispectral.tif \
--output result.tif \
--batch-size 4 \
--crop-size 1024 ]
-b 3 \ # BGRI -> RGBI
-b 2 \
-b 1 \
-b 4
2. Using kelp-o-matic Python API
The easiest way to use this model is through the kelp-o-matic package:
from kelp_o_matic import model_registry
# Load the model (automatically downloads if needed)
model = model_registry["kelp-rgbi"]
# Process a large multispectral image with automatic tiling
model.process(
input_path="path/to/your/rgbi_drone_image.tif",
output_path="path/to/output/kelp_species_segmentation.tif",
batch_size=6, # Moderate batch size for 4-band
crop_size=2048,
blur_kernel_size=5, # Post-processing median blur
morph_kernel_size=3, # Morphological operations
band_order=[1, 2, 3, 4], # Ensure RGBI order
)
# For more control, use the predict method directly
import rasterio
import numpy as np
with rasterio.open("multispectral_image.tif") as src:
# Read a 2048x2048 tile (4 bands: RGBI)
tile = src.read(window=((0, 2048), (0, 2048))) # Shape: (4, 2048, 2048)
tile = np.transpose(tile, (1, 2, 0)) # Convert to HWC
# Add batch dimension and predict
batch = np.expand_dims(tile, axis=0) # Shape: (1, 2048, 2048, 4)
batch = np.transpose(batch, (0, 3, 1, 2)) # Convert to BCHW
# Run inference (preprocessing handled automatically)
predictions = model.predict(batch)
# Post-process to get final segmentation
segmentation = model.postprocess(predictions)
# Result: 0=background, 1=giant kelp, 2=bull kelp
3. Direct ONNX Runtime Usage
import numpy as np
import onnxruntime as ort
from huggingface_hub import hf_hub_download
# Download the model
model_path = hf_hub_download(repo_id="HakaiInstitute/kelp-rgbi", filename="model.onnx")
# Load the model
session = ort.InferenceSession(model_path)
# Preprocess your 4-band image
def preprocess(image):
"""
Preprocess 4-band RGBI image for model input
image: numpy array of shape [height, width, 4] with any pixel value range
"""
# Normalize to 0-1 first
image = image.astype(np.float32) / 1.0
# Apply min-max normalization per image
img_min = image.min()
img_max = image.max()
image = (image - img_min) / (img_max - img_min + 1e-8)
# Reshape to model input format [batch, channels, height, width]
image = np.transpose(image, (2, 0, 1)) # HWC to CHW
image = np.expand_dims(image, axis=0) # Add batch dimension
return image
# Run inference
preprocessed = preprocess(your_4band_image)
input_name = session.get_inputs()[0].name
output = session.run(None, {input_name: preprocessed})
# Postprocess to get class predictions
logits = output[0] # Raw probabilities for each class
prediction = np.argmax(logits, axis=1).squeeze(0).astype(np.uint8)
# Result: 0=background, 1=giant kelp, 2=bull kelp
4. Using HuggingFace Hub Integration
from huggingface_hub import hf_hub_download
import onnxruntime as ort
# Download and load model
model_path = hf_hub_download(
repo_id="HakaiInstitute/kelp-rgbi",
filename="model.onnx",
cache_dir="./models"
)
session = ort.InferenceSession(model_path)
# ... continue with preprocessing and inference as above
Installation
For kelp-o-matic usage:
# Via pip
pip install git+https://github.com/HakaiInstitute/kelp-o-matic@dev
For direct ONNX usage:
pip install onnxruntime huggingface-hub numpy
# For GPU support:
pip install onnxruntime-gpu
Input Requirements
- Image Format: 4-band raster (GeoTIFF recommended)
- Band Order: Red, Green, Blue, Near-Infrared
- Pixel Values: Any range (model uses min-max normalization)
- Spatial Resolution: Optimized for high-resolution drone imagery (cm-level)
Output Format
- Type: Single-band raster with class labels
- Values:
- 0: Background (water, other features)
- 1: Macrocystis pyrifera (Giant kelp)
- 2: Nereocystis luetkeana (Bull kelp)
- Format: Matches input raster format and projection
- Spatial Resolution: Same as input
Note: The model outputs class probabilities, but kelp-o-matic automatically applies argmax to convert these to discrete class labels.
Performance Notes
- Dynamic Tile Size: Supports flexible tile sizes (recommended: 2048x2048 or 1024x1024)
- Batch Size: Start with 4, adjust based on available GPU memory
Large Image Processing
For processing large geospatial images, the kelp-o-matic package handles:
- Automatic Tiling: Splits large images into manageable tiles
- Overlap Handling: Uses overlapping tiles to avoid edge artifacts
- Memory Management: Processes tiles in batches to manage memory usage
- Geospatial Metadata: Preserves coordinate reference system and geotransforms
- Post-processing: Optional median filtering and morphological operations
Citation
If you use this model in your research, please cite:
@software{Denouden_Kelp-O-Matic,
author = {Denouden, Taylor and Reshitnyk, Luba},
doi = {10.5281/zenodo.7672166},
title = {{Kelp-O-Matic}},
url = {https://github.com/HakaiInstitute/kelp-o-matic}
}
License
MIT License - see the kelp-o-matic repository for details.
Related Resources
- Documentation: kelp-o-matic.readthedocs.io
- Source Code: github.com/HakaiInstitute/kelp-o-matic
- Other Models: Check the Hakai Institute HuggingFace organization for additional kelp segmentation models
Contact
For questions or issues:
- Open an issue on the GitHub repository
- Contact: Hakai Institute