wh-ft-lre5-dtstf5-adm-ga1ba16-st15k-pat3-v2-evalstp500
This model is a fine-tuned version of openai/whisper-large-v3 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5000
- Wer: 0.2427
- Cer: 0.1794
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 750
- training_steps: 15000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
0.5468 | 0.3047 | 500 | 0.5134 | 0.2906 | 0.2173 |
0.5077 | 0.6094 | 1000 | 0.4897 | 0.2876 | 0.2224 |
0.4672 | 0.9141 | 1500 | 0.4817 | 0.3140 | 0.2437 |
0.2924 | 1.2188 | 2000 | 0.4740 | 0.2277 | 0.1714 |
0.2998 | 1.5235 | 2500 | 0.4749 | 0.2453 | 0.1858 |
0.3301 | 1.8282 | 3000 | 0.4649 | 0.2455 | 0.1862 |
0.1484 | 2.1328 | 3500 | 0.5002 | 0.2265 | 0.1695 |
0.141 | 2.4375 | 4000 | 0.5007 | 0.2340 | 0.1713 |
0.1538 | 2.7422 | 4500 | 0.5000 | 0.2427 | 0.1794 |
Framework versions
- Transformers 4.52.3
- Pytorch 2.7.0+cu118
- Datasets 3.5.1
- Tokenizers 0.21.1
- Downloads last month
- 20
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for HouraMor/wh-ft-lre5-dtstf5-adm-ga1ba16-st15k-pat3-v2-evalstp500
Base model
openai/whisper-large-v3