| library_name: scikit-learn | |
| tags: | |
| - classification | |
| - tabular-data | |
| metrics: | |
| accuracy: 0.6629 | |
| precision: 0.6890 | |
| recall: 0.8482 | |
| f1: 0.7603 | |
| params: {"max_depth": 10, "min_samples_leaf": 1, "min_samples_split": 10, "n_estimators": 200} | |
| # Random Forest Classifier for Engine Condition Prediction | |
| This repository contains a trained `RandomForestClassifier` model for predicting engine condition (Normal vs. Faulty) based on various engine parameters. | |
| ## Model Details | |
| - **Algorithm**: RandomForestClassifier | |
| - **Framework**: scikit-learn | |
| ## Performance Metrics (on Test Set) | |
| - **Accuracy**: 0.6629 | |
| - **Precision**: 0.6890 | |
| - **Recall**: 0.8482 | |
| - **F1-Score**: 0.7603 | |
| ## Hyperparameters | |
| ```json | |
| { | |
| "max_depth": 10, | |
| "min_samples_leaf": 1, | |
| "min_samples_split": 10, | |
| "n_estimators": 200 | |
| } | |
| ``` | |
| ## Usage | |
| To load and use this model: | |
| ```python | |
| import joblib | |
| from huggingface_hub import hf_hub_download | |
| model_path = hf_hub_download(repo_id="HumanMachine74/engine-performance-data-model", filename="random_forest_model.joblib") | |
| model = joblib.load(model_path) | |
| # Example prediction (assuming X_new is your new data) | |
| # predictions = model.predict(X_new) | |
| ``` | |