sentiment-analysis-roberta-base-V1.8_ima_ds
This model is a fine-tuned version of FacebookAI/roberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.4926
- Accuracy: 0.5995
- Precision Macro: 0.5589
- Recall Macro: 0.5503
- F1 Macro: 0.5517
- Precision Weighted: 0.5977
- Recall Weighted: 0.5995
- F1 Weighted: 0.5954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 3407
- optimizer: Use OptimizerNames.ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 50
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | Precision Weighted | Recall Weighted | F1 Weighted |
|---|---|---|---|---|---|---|---|---|---|---|
| 1.582 | 0.4 | 20 | 1.6019 | 0.2418 | 0.0484 | 0.2 | 0.0779 | 0.0585 | 0.2418 | 0.0942 |
| 1.6182 | 0.8 | 40 | 1.5958 | 0.3325 | 0.3323 | 0.2638 | 0.1827 | 0.3042 | 0.3325 | 0.2277 |
| 1.505 | 1.2 | 60 | 1.5074 | 0.3829 | 0.3960 | 0.3950 | 0.3629 | 0.4603 | 0.3829 | 0.3923 |
| 1.4993 | 1.6 | 80 | 1.3641 | 0.4534 | 0.4534 | 0.4436 | 0.4240 | 0.4903 | 0.4534 | 0.4450 |
| 1.1364 | 2.0 | 100 | 1.3523 | 0.4484 | 0.4921 | 0.4557 | 0.4077 | 0.5692 | 0.4484 | 0.4319 |
| 1.1555 | 2.4 | 120 | 1.1630 | 0.5491 | 0.5212 | 0.5314 | 0.5153 | 0.5894 | 0.5491 | 0.5633 |
| 1.2605 | 2.8 | 140 | 1.1852 | 0.5668 | 0.5628 | 0.5562 | 0.5187 | 0.6391 | 0.5668 | 0.5595 |
| 0.8628 | 3.2 | 160 | 1.1285 | 0.5340 | 0.5389 | 0.5486 | 0.5112 | 0.5964 | 0.5340 | 0.5476 |
| 0.5813 | 3.6 | 180 | 1.1314 | 0.5768 | 0.5513 | 0.5812 | 0.5524 | 0.6095 | 0.5768 | 0.5831 |
| 1.3759 | 4.0 | 200 | 1.0887 | 0.5819 | 0.5473 | 0.5684 | 0.5511 | 0.5985 | 0.5819 | 0.5843 |
| 0.7632 | 4.4 | 220 | 1.1883 | 0.5718 | 0.5468 | 0.5304 | 0.5284 | 0.5782 | 0.5718 | 0.5628 |
| 0.8508 | 4.8 | 240 | 1.2103 | 0.5894 | 0.5603 | 0.5829 | 0.5597 | 0.6126 | 0.5894 | 0.5896 |
| 0.5188 | 5.2 | 260 | 1.2733 | 0.5995 | 0.5660 | 0.5711 | 0.5620 | 0.6085 | 0.5995 | 0.5966 |
| 1.0124 | 5.6 | 280 | 1.2794 | 0.5970 | 0.5590 | 0.5523 | 0.5541 | 0.5944 | 0.5970 | 0.5941 |
| 0.7123 | 6.0 | 300 | 1.2152 | 0.5894 | 0.5526 | 0.5669 | 0.5547 | 0.6087 | 0.5894 | 0.5967 |
| 0.36 | 6.4 | 320 | 1.3260 | 0.5718 | 0.5588 | 0.5481 | 0.5339 | 0.6098 | 0.5718 | 0.5794 |
| 0.5246 | 6.8 | 340 | 1.3272 | 0.6348 | 0.5929 | 0.5976 | 0.5945 | 0.6393 | 0.6348 | 0.6367 |
| 0.1801 | 7.2 | 360 | 1.4153 | 0.6171 | 0.5753 | 0.5654 | 0.5679 | 0.6150 | 0.6171 | 0.6139 |
| 0.1415 | 7.6 | 380 | 1.4191 | 0.5995 | 0.5658 | 0.5737 | 0.5681 | 0.6025 | 0.5995 | 0.5991 |
| 0.3009 | 8.0 | 400 | 1.4926 | 0.5995 | 0.5589 | 0.5503 | 0.5517 | 0.5977 | 0.5995 | 0.5954 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.1
- Downloads last month
- 5
Model tree for IMA-StreamSolve/sentiment-analysis-roberta-base-V1.8_ima_ds
Base model
FacebookAI/roberta-base