vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_MIX
This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5205
- Accuracy: 0.8642
- Precision: 0.8742
- Recall: 0.8642
- F1: 0.8636
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 15
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.3382 | 0.1667 | 100 | 0.7037 | 0.7592 | 0.8533 | 0.7592 | 0.7413 |
0.2441 | 0.3333 | 200 | 0.5509 | 0.8167 | 0.8354 | 0.8167 | 0.8179 |
0.1033 | 0.5 | 300 | 0.5433 | 0.8508 | 0.8663 | 0.8508 | 0.8492 |
0.0863 | 0.6667 | 400 | 0.5815 | 0.8104 | 0.8328 | 0.8104 | 0.7969 |
0.1032 | 0.8333 | 500 | 0.7683 | 0.7908 | 0.8394 | 0.7908 | 0.7771 |
0.0681 | 1.0 | 600 | 0.6216 | 0.8392 | 0.8451 | 0.8392 | 0.8393 |
0.0098 | 1.1667 | 700 | 0.8241 | 0.8087 | 0.8317 | 0.8087 | 0.8010 |
0.1486 | 1.3333 | 800 | 0.5205 | 0.8642 | 0.8742 | 0.8642 | 0.8636 |
0.0552 | 1.5 | 900 | 0.8228 | 0.8092 | 0.8290 | 0.8092 | 0.8074 |
0.1194 | 1.6667 | 1000 | 0.9466 | 0.7479 | 0.8266 | 0.7479 | 0.7067 |
0.1081 | 1.8333 | 1100 | 0.7999 | 0.8379 | 0.8586 | 0.8379 | 0.8334 |
0.0024 | 2.0 | 1200 | 0.8330 | 0.8438 | 0.8629 | 0.8438 | 0.8434 |
0.0799 | 2.1667 | 1300 | 0.7392 | 0.8588 | 0.8771 | 0.8588 | 0.8560 |
0.0018 | 2.3333 | 1400 | 0.9487 | 0.8158 | 0.8222 | 0.8158 | 0.8153 |
0.0052 | 2.5 | 1500 | 0.6795 | 0.8712 | 0.8739 | 0.8712 | 0.8678 |
0.0012 | 2.6667 | 1600 | 0.7281 | 0.8821 | 0.8859 | 0.8821 | 0.8812 |
0.0022 | 2.8333 | 1700 | 1.2392 | 0.795 | 0.7874 | 0.795 | 0.7857 |
0.0835 | 3.0 | 1800 | 1.0174 | 0.8163 | 0.8503 | 0.8163 | 0.8178 |
0.063 | 3.1667 | 1900 | 0.6986 | 0.8275 | 0.8288 | 0.8275 | 0.8258 |
0.0124 | 3.3333 | 2000 | 1.3449 | 0.7354 | 0.7889 | 0.7354 | 0.7215 |
0.0751 | 3.5 | 2100 | 0.9783 | 0.8292 | 0.8578 | 0.8292 | 0.8224 |
0.0089 | 3.6667 | 2200 | 0.6416 | 0.8871 | 0.8909 | 0.8871 | 0.8851 |
0.0833 | 3.8333 | 2300 | 0.9829 | 0.8025 | 0.8282 | 0.8025 | 0.8019 |
0.024 | 4.0 | 2400 | 0.7989 | 0.8508 | 0.8659 | 0.8508 | 0.8475 |
0.0221 | 4.1667 | 2500 | 0.6812 | 0.8842 | 0.8845 | 0.8842 | 0.8837 |
0.0005 | 4.3333 | 2600 | 0.9451 | 0.8429 | 0.8614 | 0.8429 | 0.8360 |
0.0005 | 4.5 | 2700 | 0.6669 | 0.8875 | 0.8882 | 0.8875 | 0.8865 |
0.0005 | 4.6667 | 2800 | 1.2303 | 0.8017 | 0.8330 | 0.8017 | 0.7984 |
0.0071 | 4.8333 | 2900 | 0.7767 | 0.8725 | 0.8790 | 0.8725 | 0.8725 |
0.1049 | 5.0 | 3000 | 0.7006 | 0.8646 | 0.8834 | 0.8646 | 0.8665 |
0.0761 | 5.1667 | 3100 | 0.7335 | 0.8892 | 0.8912 | 0.8892 | 0.8867 |
0.0007 | 5.3333 | 3200 | 0.6957 | 0.8867 | 0.8934 | 0.8867 | 0.8861 |
0.0006 | 5.5 | 3300 | 0.7774 | 0.8629 | 0.8739 | 0.8629 | 0.8637 |
0.0387 | 5.6667 | 3400 | 1.3677 | 0.7971 | 0.8275 | 0.7971 | 0.7944 |
0.0032 | 5.8333 | 3500 | 0.7322 | 0.8729 | 0.8836 | 0.8729 | 0.8710 |
0.0008 | 6.0 | 3600 | 0.9531 | 0.8517 | 0.8768 | 0.8517 | 0.8438 |
0.0014 | 6.1667 | 3700 | 0.8285 | 0.8654 | 0.8687 | 0.8654 | 0.8632 |
0.0004 | 6.3333 | 3800 | 0.7225 | 0.8875 | 0.8897 | 0.8875 | 0.8865 |
0.0009 | 6.5 | 3900 | 0.8248 | 0.87 | 0.8797 | 0.87 | 0.8705 |
0.0003 | 6.6667 | 4000 | 0.8972 | 0.8658 | 0.8805 | 0.8658 | 0.8665 |
0.0002 | 6.8333 | 4100 | 0.8997 | 0.8654 | 0.8800 | 0.8654 | 0.8662 |
0.0002 | 7.0 | 4200 | 0.8968 | 0.8667 | 0.8808 | 0.8667 | 0.8674 |
0.0002 | 7.1667 | 4300 | 0.8712 | 0.8725 | 0.8839 | 0.8725 | 0.8728 |
0.0002 | 7.3333 | 4400 | 0.8688 | 0.8838 | 0.8971 | 0.8838 | 0.8827 |
0.0002 | 7.5 | 4500 | 0.8917 | 0.8712 | 0.8818 | 0.8712 | 0.8686 |
0.0477 | 7.6667 | 4600 | 0.8017 | 0.8692 | 0.8832 | 0.8692 | 0.8703 |
0.0002 | 7.8333 | 4700 | 0.9936 | 0.85 | 0.8654 | 0.85 | 0.8445 |
0.0004 | 8.0 | 4800 | 0.9378 | 0.8396 | 0.8719 | 0.8396 | 0.8411 |
0.0007 | 8.1667 | 4900 | 1.2102 | 0.8013 | 0.8376 | 0.8013 | 0.7975 |
0.0004 | 8.3333 | 5000 | 0.7613 | 0.8883 | 0.9041 | 0.8883 | 0.8885 |
0.0005 | 8.5 | 5100 | 0.9156 | 0.8571 | 0.8821 | 0.8571 | 0.8573 |
0.0002 | 8.6667 | 5200 | 0.6973 | 0.8996 | 0.9065 | 0.8996 | 0.8969 |
0.0002 | 8.8333 | 5300 | 0.9252 | 0.8625 | 0.8938 | 0.8625 | 0.8636 |
0.0002 | 9.0 | 5400 | 0.7714 | 0.8854 | 0.9038 | 0.8854 | 0.8857 |
0.0001 | 9.1667 | 5500 | 0.7521 | 0.8892 | 0.9048 | 0.8892 | 0.8893 |
0.0002 | 9.3333 | 5600 | 0.7296 | 0.8971 | 0.9053 | 0.8971 | 0.8961 |
0.0002 | 9.5 | 5700 | 0.8592 | 0.8812 | 0.8882 | 0.8812 | 0.8807 |
0.027 | 9.6667 | 5800 | 1.0926 | 0.8346 | 0.8684 | 0.8346 | 0.8350 |
0.0002 | 9.8333 | 5900 | 0.8884 | 0.8654 | 0.8749 | 0.8654 | 0.8650 |
0.0255 | 10.0 | 6000 | 0.8784 | 0.8708 | 0.8809 | 0.8708 | 0.8704 |
0.0002 | 10.1667 | 6100 | 1.2491 | 0.7992 | 0.8409 | 0.7992 | 0.7816 |
0.0003 | 10.3333 | 6200 | 0.6981 | 0.8796 | 0.8850 | 0.8796 | 0.8776 |
0.0002 | 10.5 | 6300 | 0.8654 | 0.8725 | 0.8861 | 0.8725 | 0.8679 |
0.0002 | 10.6667 | 6400 | 0.5566 | 0.9012 | 0.9041 | 0.9012 | 0.8998 |
0.0002 | 10.8333 | 6500 | 0.6042 | 0.9025 | 0.9048 | 0.9025 | 0.9010 |
0.0002 | 11.0 | 6600 | 0.6078 | 0.9042 | 0.9062 | 0.9042 | 0.9027 |
0.0001 | 11.1667 | 6700 | 0.6105 | 0.9046 | 0.9066 | 0.9046 | 0.9030 |
0.0001 | 11.3333 | 6800 | 0.6138 | 0.9025 | 0.9047 | 0.9025 | 0.9010 |
0.0001 | 11.5 | 6900 | 0.6188 | 0.9025 | 0.9047 | 0.9025 | 0.9010 |
0.0001 | 11.6667 | 7000 | 0.6243 | 0.9017 | 0.9038 | 0.9017 | 0.9001 |
0.0001 | 11.8333 | 7100 | 0.6208 | 0.8992 | 0.9001 | 0.8992 | 0.8982 |
0.0067 | 12.0 | 7200 | 0.7476 | 0.8846 | 0.8948 | 0.8846 | 0.8835 |
0.0139 | 12.1667 | 7300 | 0.6116 | 0.9025 | 0.9042 | 0.9025 | 0.9013 |
0.0001 | 12.3333 | 7400 | 0.6976 | 0.8971 | 0.9053 | 0.8971 | 0.8962 |
0.0001 | 12.5 | 7500 | 0.7213 | 0.8946 | 0.9041 | 0.8946 | 0.8938 |
0.0001 | 12.6667 | 7600 | 0.7205 | 0.8954 | 0.9047 | 0.8954 | 0.8946 |
0.0001 | 12.8333 | 7700 | 0.6671 | 0.9029 | 0.9075 | 0.9029 | 0.9008 |
0.0001 | 13.0 | 7800 | 0.6448 | 0.9071 | 0.9130 | 0.9071 | 0.9059 |
0.0001 | 13.1667 | 7900 | 0.6449 | 0.9071 | 0.9130 | 0.9071 | 0.9059 |
0.0001 | 13.3333 | 8000 | 0.6453 | 0.9071 | 0.9130 | 0.9071 | 0.9059 |
0.0001 | 13.5 | 8100 | 0.6340 | 0.9087 | 0.9136 | 0.9087 | 0.9075 |
0.0001 | 13.6667 | 8200 | 0.6347 | 0.9087 | 0.9136 | 0.9087 | 0.9075 |
0.0001 | 13.8333 | 8300 | 0.6350 | 0.9092 | 0.9141 | 0.9092 | 0.9079 |
0.0001 | 14.0 | 8400 | 0.6355 | 0.9096 | 0.9144 | 0.9096 | 0.9084 |
0.0001 | 14.1667 | 8500 | 0.6358 | 0.9092 | 0.9139 | 0.9092 | 0.9080 |
0.0001 | 14.3333 | 8600 | 0.6360 | 0.9092 | 0.9139 | 0.9092 | 0.9080 |
0.0001 | 14.5 | 8700 | 0.6363 | 0.9092 | 0.9139 | 0.9092 | 0.9080 |
0.0001 | 14.6667 | 8800 | 0.6365 | 0.9096 | 0.9143 | 0.9096 | 0.9084 |
0.0001 | 14.8333 | 8900 | 0.6367 | 0.9096 | 0.9143 | 0.9096 | 0.9084 |
0.0001 | 15.0 | 9000 | 0.6369 | 0.9096 | 0.9143 | 0.9096 | 0.9084 |
Framework versions
- Transformers 4.48.2
- Pytorch 2.6.0+cu126
- Datasets 3.1.0
- Tokenizers 0.21.0
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Ivanrs/vit-base-kidney-stone-2-Jonathan_El-Beze_-w256_1k_v1-_MIX
Base model
google/vit-base-patch16-224-in21kEvaluation results
- Accuracy on imagefoldertest set self-reported0.864
- Precision on imagefoldertest set self-reported0.874
- Recall on imagefoldertest set self-reported0.864
- F1 on imagefoldertest set self-reported0.864