JacobLinCool's picture
Upload processor
374d193 verified
metadata
library_name: transformers
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_1
metrics:
  - wer
model-index:
  - name: whisper-large-v3-turbo-16e-c
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_16_1
          type: common_voice_16_1
          config: en
          split: test
          args: en
        metrics:
          - type: wer
            value: 60.342956370740175
            name: Wer

whisper-large-v3-turbo-16e-c

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the common_voice_16_1 dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2775
  • Wer: 60.3430

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
No log 0 0 7.6611 130.4102
1.3625 0.1 500 2.0087 73.6922
0.9901 0.2 1000 1.4311 58.1072
0.7534 0.3 1500 1.3291 55.8715
0.8052 0.4 2000 1.3063 50.5318
0.7024 0.5 2500 1.2896 46.6464
0.926 0.6 3000 1.2833 59.4747
0.6204 0.7 3500 1.2788 49.9674
0.7267 0.8 4000 1.2791 58.9755
0.8442 0.9 4500 1.2775 50.2930
0.9145 1.0 5000 1.2775 60.3430

Framework versions

  • Transformers 4.54.0
  • Pytorch 2.8.0.dev20250319+cu128
  • Datasets 3.6.0
  • Tokenizers 0.21.2