whisper-large-v3-turbo-ami-disfluent-encoder
This model is a fine-tuned version of openai/whisper-large-v3-turbo on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3796
- Wer: 8.3234
- Cer: 4.2511
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
---|---|---|---|---|---|
No log | 0 | 0 | 2.8591 | 23.2283 | 14.9979 |
0.3179 | 0.1 | 500 | 0.2639 | 10.4042 | 5.5970 |
0.231 | 1.0748 | 1000 | 0.2583 | 9.9588 | 5.0449 |
0.1146 | 2.0496 | 1500 | 0.2564 | 9.0347 | 4.5257 |
0.0568 | 3.0244 | 2000 | 0.2879 | 9.0713 | 4.6819 |
0.0578 | 3.1244 | 2500 | 0.2746 | 8.8652 | 4.4301 |
0.0292 | 4.0992 | 3000 | 0.3127 | 8.4131 | 4.3174 |
0.0132 | 5.074 | 3500 | 0.3504 | 8.3832 | 4.2668 |
0.0054 | 6.0488 | 4000 | 0.3726 | 8.3333 | 4.2660 |
0.0038 | 7.0236 | 4500 | 0.3774 | 8.3267 | 4.2539 |
0.0024 | 7.1236 | 5000 | 0.3796 | 8.3234 | 4.2511 |
Framework versions
- Transformers 4.54.0
- Pytorch 2.8.0.dev20250319+cu128
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for JacobLinCool/whisper-large-v3-turbo-ami-disfluent-encoder
Base model
openai/whisper-large-v3
Finetuned
openai/whisper-large-v3-turbo