Upload BaichuanForCausalLM
Browse files- config.json +29 -0
- configuration_baichuan.py +67 -0
- generation_config.json +7 -0
- generation_utils.py +83 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +234 -0
- modeling_baichuan.py +781 -0
- quantizer.py +210 -0
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,29 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "_name_or_path": "/mnt/bn/lujinghui-nas-lq/models/baichuan2_7b_ontonotes_dsot_bs128_e4_v1.01/",
         | 
| 4 | 
            +
              "architectures": [
         | 
| 5 | 
            +
                "BaichuanForCausalLM"
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "auto_map": {
         | 
| 8 | 
            +
                "AutoConfig": "configuration_baichuan.BaichuanConfig",
         | 
| 9 | 
            +
                "AutoModelForCausalLM": "modeling_baichuan.BaichuanForCausalLM"
         | 
| 10 | 
            +
              },
         | 
| 11 | 
            +
              "bos_token_id": 1,
         | 
| 12 | 
            +
              "eos_token_id": 2,
         | 
| 13 | 
            +
              "hidden_act": "silu",
         | 
| 14 | 
            +
              "hidden_size": 4096,
         | 
| 15 | 
            +
              "initializer_range": 0.02,
         | 
| 16 | 
            +
              "intermediate_size": 11008,
         | 
| 17 | 
            +
              "max_position_embeddings": 4096,
         | 
| 18 | 
            +
              "model_max_length": 4096,
         | 
| 19 | 
            +
              "model_type": "baichuan",
         | 
| 20 | 
            +
              "num_attention_heads": 32,
         | 
| 21 | 
            +
              "num_hidden_layers": 32,
         | 
| 22 | 
            +
              "pad_token_id": 0,
         | 
| 23 | 
            +
              "rms_norm_eps": 1e-06,
         | 
| 24 | 
            +
              "tie_word_embeddings": false,
         | 
| 25 | 
            +
              "torch_dtype": "float16",
         | 
| 26 | 
            +
              "transformers_version": "4.36.2",
         | 
| 27 | 
            +
              "use_cache": true,
         | 
| 28 | 
            +
              "vocab_size": 125696
         | 
| 29 | 
            +
            }
         | 
    	
        configuration_baichuan.py
    ADDED
    
    | @@ -0,0 +1,67 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 Baichuan Inc. All Rights Reserved.
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 6 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 7 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 8 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 11 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 12 | 
            +
            # You may obtain a copy of the License at
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 17 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 18 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 19 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 20 | 
            +
            # limitations under the License.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 23 | 
            +
            from transformers.utils import logging
         | 
| 24 | 
            +
             | 
| 25 | 
            +
             | 
| 26 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 27 | 
            +
             | 
| 28 | 
            +
             | 
| 29 | 
            +
            class BaichuanConfig(PretrainedConfig):
         | 
| 30 | 
            +
                model_type = "baichuan"
         | 
| 31 | 
            +
                keys_to_ignore_at_inference = ["past_key_values"]
         | 
| 32 | 
            +
             | 
| 33 | 
            +
                def __init__(
         | 
| 34 | 
            +
                    self,
         | 
| 35 | 
            +
                    vocab_size=125696,
         | 
| 36 | 
            +
                    hidden_size=4096,
         | 
| 37 | 
            +
                    intermediate_size=11008,
         | 
| 38 | 
            +
                    num_hidden_layers=32,
         | 
| 39 | 
            +
                    num_attention_heads=32,
         | 
| 40 | 
            +
                    hidden_act="silu",
         | 
| 41 | 
            +
                    max_position_embeddings=4096,
         | 
| 42 | 
            +
                    initializer_range=0.02,
         | 
| 43 | 
            +
                    rms_norm_eps=1e-6,
         | 
| 44 | 
            +
                    use_cache=True,
         | 
| 45 | 
            +
                    pad_token_id=0,
         | 
| 46 | 
            +
                    bos_token_id=1,
         | 
| 47 | 
            +
                    eos_token_id=2,
         | 
| 48 | 
            +
                    tie_word_embeddings=False,
         | 
| 49 | 
            +
                    **kwargs,
         | 
| 50 | 
            +
                ):
         | 
| 51 | 
            +
                    self.vocab_size = vocab_size
         | 
| 52 | 
            +
                    self.max_position_embeddings = max_position_embeddings
         | 
| 53 | 
            +
                    self.hidden_size = hidden_size
         | 
| 54 | 
            +
                    self.intermediate_size = intermediate_size
         | 
| 55 | 
            +
                    self.num_hidden_layers = num_hidden_layers
         | 
| 56 | 
            +
                    self.num_attention_heads = num_attention_heads
         | 
| 57 | 
            +
                    self.hidden_act = hidden_act
         | 
| 58 | 
            +
                    self.initializer_range = initializer_range
         | 
| 59 | 
            +
                    self.rms_norm_eps = rms_norm_eps
         | 
| 60 | 
            +
                    self.use_cache = use_cache
         | 
| 61 | 
            +
                    super().__init__(
         | 
| 62 | 
            +
                        pad_token_id=pad_token_id,
         | 
| 63 | 
            +
                        bos_token_id=bos_token_id,
         | 
| 64 | 
            +
                        eos_token_id=eos_token_id,
         | 
| 65 | 
            +
                        tie_word_embeddings=tie_word_embeddings,
         | 
| 66 | 
            +
                        **kwargs,
         | 
| 67 | 
            +
                    )
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,7 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 1,
         | 
| 4 | 
            +
              "eos_token_id": 2,
         | 
| 5 | 
            +
              "pad_token_id": 0,
         | 
| 6 | 
            +
              "transformers_version": "4.36.2"
         | 
| 7 | 
            +
            }
         | 
    	
        generation_utils.py
    ADDED
    
    | @@ -0,0 +1,83 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import List
         | 
| 2 | 
            +
            from queue import Queue
         | 
| 3 | 
            +
             | 
| 4 | 
            +
            import torch
         | 
| 5 | 
            +
             | 
| 6 | 
            +
             | 
| 7 | 
            +
            def build_chat_input(model, tokenizer, messages: List[dict], max_new_tokens: int=0):
         | 
| 8 | 
            +
                def _parse_messages(messages, split_role="user"):
         | 
| 9 | 
            +
                    system, rounds = "", []
         | 
| 10 | 
            +
                    round = []
         | 
| 11 | 
            +
                    for i, message in enumerate(messages):
         | 
| 12 | 
            +
                        if message["role"] == "system":
         | 
| 13 | 
            +
                            assert i == 0
         | 
| 14 | 
            +
                            system = message["content"]
         | 
| 15 | 
            +
                            continue
         | 
| 16 | 
            +
                        if message["role"] == split_role and round:
         | 
| 17 | 
            +
                            rounds.append(round)
         | 
| 18 | 
            +
                            round = []
         | 
| 19 | 
            +
                        round.append(message)
         | 
| 20 | 
            +
                    if round:
         | 
| 21 | 
            +
                        rounds.append(round)
         | 
| 22 | 
            +
                    return system, rounds
         | 
| 23 | 
            +
             | 
| 24 | 
            +
                max_new_tokens = max_new_tokens or model.generation_config.max_new_tokens
         | 
| 25 | 
            +
                max_input_tokens = model.config.model_max_length - max_new_tokens
         | 
| 26 | 
            +
                system, rounds = _parse_messages(messages, split_role="user")
         | 
| 27 | 
            +
                system_tokens = tokenizer.encode(system)
         | 
| 28 | 
            +
                max_history_tokens = max_input_tokens - len(system_tokens)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                history_tokens = []
         | 
| 31 | 
            +
                for round in rounds[::-1]:
         | 
| 32 | 
            +
                    round_tokens = []
         | 
| 33 | 
            +
                    for message in round:
         | 
| 34 | 
            +
                        if message["role"] == "user":
         | 
| 35 | 
            +
                            round_tokens.append(model.generation_config.user_token_id)
         | 
| 36 | 
            +
                        else:
         | 
| 37 | 
            +
                            round_tokens.append(model.generation_config.assistant_token_id)
         | 
| 38 | 
            +
                        round_tokens.extend(tokenizer.encode(message["content"]))
         | 
| 39 | 
            +
                    if len(history_tokens) == 0 or len(history_tokens) + len(round_tokens) <= max_history_tokens:
         | 
| 40 | 
            +
                        history_tokens = round_tokens + history_tokens  # concat left
         | 
| 41 | 
            +
                        if len(history_tokens) < max_history_tokens:
         | 
| 42 | 
            +
                            continue
         | 
| 43 | 
            +
                    break
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                input_tokens = system_tokens + history_tokens
         | 
| 46 | 
            +
                if messages[-1]["role"] != "assistant":
         | 
| 47 | 
            +
                    input_tokens.append(model.generation_config.assistant_token_id)
         | 
| 48 | 
            +
                input_tokens = input_tokens[-max_input_tokens:]  # truncate left
         | 
| 49 | 
            +
                return torch.LongTensor([input_tokens]).to(model.device)
         | 
| 50 | 
            +
             | 
| 51 | 
            +
             | 
| 52 | 
            +
            class TextIterStreamer:
         | 
| 53 | 
            +
                def __init__(self, tokenizer, skip_prompt=False, skip_special_tokens=False):
         | 
| 54 | 
            +
                    self.tokenizer = tokenizer
         | 
| 55 | 
            +
                    self.skip_prompt = skip_prompt
         | 
| 56 | 
            +
                    self.skip_special_tokens = skip_special_tokens
         | 
| 57 | 
            +
                    self.tokens = []
         | 
| 58 | 
            +
                    self.text_queue = Queue()
         | 
| 59 | 
            +
                    self.next_tokens_are_prompt = True
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                def put(self, value):
         | 
| 62 | 
            +
                    if self.skip_prompt and self.next_tokens_are_prompt:
         | 
| 63 | 
            +
                        self.next_tokens_are_prompt = False
         | 
| 64 | 
            +
                    else:
         | 
| 65 | 
            +
                        if len(value.shape) > 1:
         | 
| 66 | 
            +
                            value = value[0]
         | 
| 67 | 
            +
                        self.tokens.extend(value.tolist())
         | 
| 68 | 
            +
                        self.text_queue.put(
         | 
| 69 | 
            +
                            self.tokenizer.decode(self.tokens, skip_special_tokens=self.skip_special_tokens))
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                def end(self):
         | 
| 72 | 
            +
                    self.text_queue.put(None)
         | 
| 73 | 
            +
             | 
| 74 | 
            +
                def __iter__(self):
         | 
| 75 | 
            +
                    return self
         | 
| 76 | 
            +
             | 
| 77 | 
            +
                def __next__(self):
         | 
| 78 | 
            +
                    value = self.text_queue.get()
         | 
| 79 | 
            +
                    if value is None:
         | 
| 80 | 
            +
                        raise StopIteration()
         | 
| 81 | 
            +
                    else:
         | 
| 82 | 
            +
                        return value
         | 
| 83 | 
            +
             | 
    	
        model-00001-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:d7b385f9fd6b56bdafd86163181c996fec6e3974ab9286fb17cc51b675afd3eb
         | 
| 3 | 
            +
            size 4987182728
         | 
    	
        model-00002-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5cc9df20c43676330fe8d6587f9428e335b9ed3b8eb6f13d32b5ad25120720bd
         | 
| 3 | 
            +
            size 4947404600
         | 
    	
        model-00003-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:5811ccfbf289ee1d6d2d94928c4ece5faa12d9f75d4691b7a07b70c5808c6cc4
         | 
| 3 | 
            +
            size 4047683560
         | 
    	
        model-00004-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:864ae8620b5288756bee9b9528068e34af73bfa63e7fe7683e3382698484a7c2
         | 
| 3 | 
            +
            size 1029701760
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,234 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_size": 15011946496
         | 
| 4 | 
            +
              },
         | 
| 5 | 
            +
              "weight_map": {
         | 
| 6 | 
            +
                "lm_head.weight": "model-00004-of-00004.safetensors",
         | 
| 7 | 
            +
                "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
         | 
| 8 | 
            +
                "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 9 | 
            +
                "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 10 | 
            +
                "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 11 | 
            +
                "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 12 | 
            +
                "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 13 | 
            +
                "model.layers.0.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 14 | 
            +
                "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 15 | 
            +
                "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 16 | 
            +
                "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 17 | 
            +
                "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 18 | 
            +
                "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 19 | 
            +
                "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 20 | 
            +
                "model.layers.1.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 21 | 
            +
                "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 22 | 
            +
                "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 23 | 
            +
                "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 24 | 
            +
                "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 25 | 
            +
                "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 26 | 
            +
                "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 27 | 
            +
                "model.layers.10.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 28 | 
            +
                "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 29 | 
            +
                "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 30 | 
            +
                "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 31 | 
            +
                "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 32 | 
            +
                "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 33 | 
            +
                "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 34 | 
            +
                "model.layers.11.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 35 | 
            +
                "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 36 | 
            +
                "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 37 | 
            +
                "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 38 | 
            +
                "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 39 | 
            +
                "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 40 | 
            +
                "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 41 | 
            +
                "model.layers.12.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 42 | 
            +
                "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 43 | 
            +
                "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 44 | 
            +
                "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 45 | 
            +
                "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 46 | 
            +
                "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 47 | 
            +
                "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 48 | 
            +
                "model.layers.13.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 49 | 
            +
                "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 50 | 
            +
                "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 51 | 
            +
                "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 52 | 
            +
                "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 53 | 
            +
                "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 54 | 
            +
                "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 55 | 
            +
                "model.layers.14.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 56 | 
            +
                "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 57 | 
            +
                "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 58 | 
            +
                "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 59 | 
            +
                "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 60 | 
            +
                "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 61 | 
            +
                "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 62 | 
            +
                "model.layers.15.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 63 | 
            +
                "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 64 | 
            +
                "model.layers.16.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 65 | 
            +
                "model.layers.16.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 66 | 
            +
                "model.layers.16.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 67 | 
            +
                "model.layers.16.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 68 | 
            +
                "model.layers.16.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 69 | 
            +
                "model.layers.16.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 70 | 
            +
                "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 71 | 
            +
                "model.layers.17.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 72 | 
            +
                "model.layers.17.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 73 | 
            +
                "model.layers.17.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 74 | 
            +
                "model.layers.17.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 75 | 
            +
                "model.layers.17.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 76 | 
            +
                "model.layers.17.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 77 | 
            +
                "model.layers.17.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 78 | 
            +
                "model.layers.18.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 79 | 
            +
                "model.layers.18.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 80 | 
            +
                "model.layers.18.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 81 | 
            +
                "model.layers.18.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 82 | 
            +
                "model.layers.18.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 83 | 
            +
                "model.layers.18.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 84 | 
            +
                "model.layers.18.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 85 | 
            +
                "model.layers.19.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 86 | 
            +
                "model.layers.19.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 87 | 
            +
                "model.layers.19.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 88 | 
            +
                "model.layers.19.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 89 | 
            +
                "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 90 | 
            +
                "model.layers.19.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 91 | 
            +
                "model.layers.19.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 92 | 
            +
                "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 93 | 
            +
                "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 94 | 
            +
                "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 95 | 
            +
                "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 96 | 
            +
                "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 97 | 
            +
                "model.layers.2.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 98 | 
            +
                "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 99 | 
            +
                "model.layers.20.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 100 | 
            +
                "model.layers.20.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 101 | 
            +
                "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 102 | 
            +
                "model.layers.20.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 103 | 
            +
                "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 104 | 
            +
                "model.layers.20.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 105 | 
            +
                "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 106 | 
            +
                "model.layers.21.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 107 | 
            +
                "model.layers.21.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 108 | 
            +
                "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 109 | 
            +
                "model.layers.21.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 110 | 
            +
                "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 111 | 
            +
                "model.layers.21.self_attn.W_pack.weight": "model-00002-of-00004.safetensors",
         | 
| 112 | 
            +
                "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 113 | 
            +
                "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 114 | 
            +
                "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 115 | 
            +
                "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 116 | 
            +
                "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 117 | 
            +
                "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 118 | 
            +
                "model.layers.22.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 119 | 
            +
                "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 120 | 
            +
                "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 121 | 
            +
                "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 122 | 
            +
                "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 123 | 
            +
                "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 124 | 
            +
                "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 125 | 
            +
                "model.layers.23.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 126 | 
            +
                "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 127 | 
            +
                "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 128 | 
            +
                "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 129 | 
            +
                "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 130 | 
            +
                "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 131 | 
            +
                "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 132 | 
            +
                "model.layers.24.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 133 | 
            +
                "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 134 | 
            +
                "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 135 | 
            +
                "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 136 | 
            +
                "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 137 | 
            +
                "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 138 | 
            +
                "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 139 | 
            +
                "model.layers.25.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 140 | 
            +
                "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 141 | 
            +
                "model.layers.26.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 142 | 
            +
                "model.layers.26.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 143 | 
            +
                "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 144 | 
            +
                "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 145 | 
            +
                "model.layers.26.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 146 | 
            +
                "model.layers.26.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 147 | 
            +
                "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 148 | 
            +
                "model.layers.27.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 149 | 
            +
                "model.layers.27.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 150 | 
            +
                "model.layers.27.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 151 | 
            +
                "model.layers.27.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 152 | 
            +
                "model.layers.27.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 153 | 
            +
                "model.layers.27.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 154 | 
            +
                "model.layers.27.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 155 | 
            +
                "model.layers.28.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 156 | 
            +
                "model.layers.28.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 157 | 
            +
                "model.layers.28.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 158 | 
            +
                "model.layers.28.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 159 | 
            +
                "model.layers.28.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 160 | 
            +
                "model.layers.28.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 161 | 
            +
                "model.layers.28.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 162 | 
            +
                "model.layers.29.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 163 | 
            +
                "model.layers.29.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 164 | 
            +
                "model.layers.29.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 165 | 
            +
                "model.layers.29.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 166 | 
            +
                "model.layers.29.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 167 | 
            +
                "model.layers.29.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 168 | 
            +
                "model.layers.29.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 169 | 
            +
                "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 170 | 
            +
                "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 171 | 
            +
                "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 172 | 
            +
                "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 173 | 
            +
                "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 174 | 
            +
                "model.layers.3.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 175 | 
            +
                "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 176 | 
            +
                "model.layers.30.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 177 | 
            +
                "model.layers.30.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 178 | 
            +
                "model.layers.30.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 179 | 
            +
                "model.layers.30.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 180 | 
            +
                "model.layers.30.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 181 | 
            +
                "model.layers.30.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 182 | 
            +
                "model.layers.30.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 183 | 
            +
                "model.layers.31.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 184 | 
            +
                "model.layers.31.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 185 | 
            +
                "model.layers.31.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 186 | 
            +
                "model.layers.31.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 187 | 
            +
                "model.layers.31.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 188 | 
            +
                "model.layers.31.self_attn.W_pack.weight": "model-00003-of-00004.safetensors",
         | 
| 189 | 
            +
                "model.layers.31.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 190 | 
            +
                "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 191 | 
            +
                "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 192 | 
            +
                "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 193 | 
            +
                "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 194 | 
            +
                "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 195 | 
            +
                "model.layers.4.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 196 | 
            +
                "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 197 | 
            +
                "model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 198 | 
            +
                "model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 199 | 
            +
                "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 200 | 
            +
                "model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 201 | 
            +
                "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 202 | 
            +
                "model.layers.5.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 203 | 
            +
                "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 204 | 
            +
                "model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 205 | 
            +
                "model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 206 | 
            +
                "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 207 | 
            +
                "model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 208 | 
            +
                "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 209 | 
            +
                "model.layers.6.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 210 | 
            +
                "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 211 | 
            +
                "model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 212 | 
            +
                "model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 213 | 
            +
                "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 214 | 
            +
                "model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 215 | 
            +
                "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 216 | 
            +
                "model.layers.7.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 217 | 
            +
                "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 218 | 
            +
                "model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 219 | 
            +
                "model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 220 | 
            +
                "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 221 | 
            +
                "model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 222 | 
            +
                "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
         | 
| 223 | 
            +
                "model.layers.8.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 224 | 
            +
                "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 225 | 
            +
                "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 226 | 
            +
                "model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 227 | 
            +
                "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 228 | 
            +
                "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 229 | 
            +
                "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 230 | 
            +
                "model.layers.9.self_attn.W_pack.weight": "model-00001-of-00004.safetensors",
         | 
| 231 | 
            +
                "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 232 | 
            +
                "model.norm.weight": "model-00003-of-00004.safetensors"
         | 
| 233 | 
            +
              }
         | 
| 234 | 
            +
            }
         | 
    	
        modeling_baichuan.py
    ADDED
    
    | @@ -0,0 +1,781 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # Copyright 2023 Baichuan Inc. All Rights Reserved.
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
         | 
| 4 | 
            +
            #
         | 
| 5 | 
            +
            # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
         | 
| 6 | 
            +
            # and OPT implementations in this library. It has been modified from its
         | 
| 7 | 
            +
            # original forms to accommodate minor architectural differences compared
         | 
| 8 | 
            +
            # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
         | 
| 9 | 
            +
            #
         | 
| 10 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 11 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 12 | 
            +
            # You may obtain a copy of the License at
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 17 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 18 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 19 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 20 | 
            +
            # limitations under the License.
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            from .configuration_baichuan import BaichuanConfig
         | 
| 24 | 
            +
            from .generation_utils import build_chat_input, TextIterStreamer
         | 
| 25 | 
            +
             | 
| 26 | 
            +
            import math
         | 
| 27 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 28 | 
            +
            from threading import Thread
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            import torch
         | 
| 31 | 
            +
            import torch.utils.checkpoint
         | 
| 32 | 
            +
            from torch import nn
         | 
| 33 | 
            +
            from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
         | 
| 34 | 
            +
            from torch.nn import functional as F
         | 
| 35 | 
            +
            from transformers import PreTrainedModel, PretrainedConfig
         | 
| 36 | 
            +
            from transformers.activations import ACT2FN
         | 
| 37 | 
            +
            from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
         | 
| 38 | 
            +
            from transformers.generation.utils import GenerationConfig
         | 
| 39 | 
            +
            from transformers.utils import logging, ContextManagers
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            import os
         | 
| 42 | 
            +
            from contextlib import contextmanager
         | 
| 43 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
            try:
         | 
| 46 | 
            +
                from xformers import ops as xops
         | 
| 47 | 
            +
            except ImportError:
         | 
| 48 | 
            +
                xops = None
         | 
| 49 | 
            +
                logger.warning(
         | 
| 50 | 
            +
                    "Xformers is not installed correctly. If you want to use memory_efficient_attention to accelerate training use the following command to install Xformers\npip install xformers."
         | 
| 51 | 
            +
                )
         | 
| 52 | 
            +
             | 
| 53 | 
            +
             | 
| 54 | 
            +
            # Copied from transformers.models.bart.modeling_bart._make_causal_mask
         | 
| 55 | 
            +
            def _make_causal_mask(
         | 
| 56 | 
            +
                    input_ids_shape: torch.Size, dtype: torch.dtype, device: torch.device, past_key_values_length: int = 0
         | 
| 57 | 
            +
            ):
         | 
| 58 | 
            +
                """
         | 
| 59 | 
            +
                Make causal mask used for bi-directional self-attention.
         | 
| 60 | 
            +
                """
         | 
| 61 | 
            +
                bsz, tgt_len = input_ids_shape
         | 
| 62 | 
            +
                mask = torch.full((tgt_len, tgt_len), torch.tensor(torch.finfo(dtype).min, device=device), device=device)
         | 
| 63 | 
            +
                mask_cond = torch.arange(mask.size(-1), device=device)
         | 
| 64 | 
            +
                mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
         | 
| 65 | 
            +
                mask = mask.to(dtype)
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                if past_key_values_length > 0:
         | 
| 68 | 
            +
                    mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype, device=device), mask], dim=-1)
         | 
| 69 | 
            +
                return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
            def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
         | 
| 72 | 
            +
                """
         | 
| 73 | 
            +
                Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
         | 
| 74 | 
            +
                """
         | 
| 75 | 
            +
                if len(mask.size()) == 3:
         | 
| 76 | 
            +
                    bsz, src_len, _ = mask.size()
         | 
| 77 | 
            +
                    tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 78 | 
            +
                    expanded_mask = mask[:,None,:,:].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 79 | 
            +
                else:
         | 
| 80 | 
            +
                    bsz, src_len = mask.size()
         | 
| 81 | 
            +
                    tgt_len = tgt_len if tgt_len is not None else src_len
         | 
| 82 | 
            +
                    expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                inverted_mask = 1.0 - expanded_mask
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
             | 
| 89 | 
            +
            class RMSNorm(nn.Module):
         | 
| 90 | 
            +
                def __init__(self, hidden_size, eps=1e-6):
         | 
| 91 | 
            +
                    """
         | 
| 92 | 
            +
                    RMSNorm is equivalent to T5LayerNorm
         | 
| 93 | 
            +
                    """
         | 
| 94 | 
            +
                    super().__init__()
         | 
| 95 | 
            +
                    self.weight = nn.Parameter(torch.ones(hidden_size))
         | 
| 96 | 
            +
                    self.variance_epsilon = eps
         | 
| 97 | 
            +
             | 
| 98 | 
            +
                def forward(self, hidden_states):
         | 
| 99 | 
            +
                    variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True)
         | 
| 100 | 
            +
                    hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                    # convert into half-precision if necessary
         | 
| 103 | 
            +
                    if self.weight.dtype in [torch.float16, torch.bfloat16]:
         | 
| 104 | 
            +
                        hidden_states = hidden_states.to(self.weight.dtype)
         | 
| 105 | 
            +
             | 
| 106 | 
            +
                    return self.weight * hidden_states
         | 
| 107 | 
            +
             | 
| 108 | 
            +
             | 
| 109 | 
            +
            class RotaryEmbedding(torch.nn.Module):
         | 
| 110 | 
            +
                def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
         | 
| 111 | 
            +
                    super().__init__()
         | 
| 112 | 
            +
                    self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float().to(device) / dim))
         | 
| 113 | 
            +
                    self.max_seq_len_cached = max_position_embeddings
         | 
| 114 | 
            +
                    t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
         | 
| 115 | 
            +
                    freqs = torch.outer(t, self.inv_freq)
         | 
| 116 | 
            +
                    emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 117 | 
            +
                    self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32)
         | 
| 118 | 
            +
                    self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32)
         | 
| 119 | 
            +
                def forward(self, x, seq_len=None):
         | 
| 120 | 
            +
                    # x: [bs, num_attention_heads, seq_len, head_size]
         | 
| 121 | 
            +
                    # This `if` block is unlikely to be run after we build sin/cos in `__init__`. Keep the logic here just in case.
         | 
| 122 | 
            +
                    if seq_len > self.max_seq_len_cached:
         | 
| 123 | 
            +
                        self.max_seq_len_cached = seq_len
         | 
| 124 | 
            +
                        t = torch.arange(self.max_seq_len_cached, device=self.inv_freq.device, dtype=torch.float32)
         | 
| 125 | 
            +
                        freqs = torch.outer(t, self.inv_freq)
         | 
| 126 | 
            +
                        emb = torch.cat((freqs, freqs), dim=-1)
         | 
| 127 | 
            +
                        self.cos_cached = emb.cos()[None, None, :, :].to(torch.float32).to(x.device)
         | 
| 128 | 
            +
                        self.sin_cached = emb.sin()[None, None, :, :].to(torch.float32).to(x.device)
         | 
| 129 | 
            +
                    elif self.cos_cached.device != x.device:
         | 
| 130 | 
            +
                        self.cos_cached = self.cos_cached.to(x.device)
         | 
| 131 | 
            +
                        self.sin_cached = self.sin_cached.to(x.device)  
         | 
| 132 | 
            +
                    return (
         | 
| 133 | 
            +
                        self.cos_cached[:, :, :seq_len, ...],
         | 
| 134 | 
            +
                        self.sin_cached[:, :, :seq_len, ...],
         | 
| 135 | 
            +
                    )
         | 
| 136 | 
            +
             | 
| 137 | 
            +
             | 
| 138 | 
            +
            def rotate_half(x):
         | 
| 139 | 
            +
                """Rotates half the hidden dims of the input."""
         | 
| 140 | 
            +
                x1 = x[..., : x.shape[-1] // 2]
         | 
| 141 | 
            +
                x2 = x[..., x.shape[-1] // 2:]
         | 
| 142 | 
            +
                return torch.cat((-x2, x1), dim=-1)
         | 
| 143 | 
            +
             | 
| 144 | 
            +
             | 
| 145 | 
            +
            def apply_rotary_pos_emb(q, k, cos_, sin_, position_ids):
         | 
| 146 | 
            +
                cos = cos_.squeeze(1).squeeze(0)  # [seq_len, dim]
         | 
| 147 | 
            +
                sin = sin_.squeeze(1).squeeze(0)  # [seq_len, dim]
         | 
| 148 | 
            +
                cos = cos[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
         | 
| 149 | 
            +
                sin = sin[position_ids].unsqueeze(1)  # [bs, 1, seq_len, dim]
         | 
| 150 | 
            +
                q_embed = (q.float() * cos) + (rotate_half(q.float()) * sin)
         | 
| 151 | 
            +
                k_embed = (k.float() * cos) + (rotate_half(k.float()) * sin)
         | 
| 152 | 
            +
                return q_embed.to(q.dtype), k_embed.to(k.dtype)
         | 
| 153 | 
            +
             | 
| 154 | 
            +
             | 
| 155 | 
            +
            class MLP(nn.Module):
         | 
| 156 | 
            +
                def __init__(
         | 
| 157 | 
            +
                        self,
         | 
| 158 | 
            +
                        hidden_size: int,
         | 
| 159 | 
            +
                        intermediate_size: int,
         | 
| 160 | 
            +
                        hidden_act: str,
         | 
| 161 | 
            +
                ):
         | 
| 162 | 
            +
                    super().__init__()
         | 
| 163 | 
            +
                    self.gate_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 164 | 
            +
                    self.down_proj = nn.Linear(intermediate_size, hidden_size, bias=False)
         | 
| 165 | 
            +
                    self.up_proj = nn.Linear(hidden_size, intermediate_size, bias=False)
         | 
| 166 | 
            +
                    self.act_fn = ACT2FN[hidden_act]
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                def forward(self, x):
         | 
| 169 | 
            +
                    return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
         | 
| 170 | 
            +
             | 
| 171 | 
            +
             | 
| 172 | 
            +
            class Attention(nn.Module):
         | 
| 173 | 
            +
                """Multi-headed attention from 'Attention Is All You Need' paper"""
         | 
| 174 | 
            +
                def __init__(self, config: BaichuanConfig):
         | 
| 175 | 
            +
                    super().__init__()
         | 
| 176 | 
            +
                    self.config = config
         | 
| 177 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 178 | 
            +
                    self.num_heads = config.num_attention_heads
         | 
| 179 | 
            +
                    self.head_dim = self.hidden_size // self.num_heads
         | 
| 180 | 
            +
                    self.max_position_embeddings = config.max_position_embeddings
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    if (self.head_dim * self.num_heads) != self.hidden_size:
         | 
| 183 | 
            +
                        raise ValueError(
         | 
| 184 | 
            +
                            f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
         | 
| 185 | 
            +
                            f" and `num_heads`: {self.num_heads})."
         | 
| 186 | 
            +
                        )
         | 
| 187 | 
            +
                    self.W_pack = nn.Linear(self.hidden_size, 3 * self.hidden_size, bias=False)
         | 
| 188 | 
            +
                    self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)
         | 
| 189 | 
            +
                    self.rotary_emb = RotaryEmbedding(self.head_dim, max_position_embeddings=self.max_position_embeddings)
         | 
| 190 | 
            +
             | 
| 191 | 
            +
                def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
         | 
| 192 | 
            +
                    return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                def forward(
         | 
| 195 | 
            +
                        self,
         | 
| 196 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 197 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 198 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 199 | 
            +
                        past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 200 | 
            +
                        output_attentions: bool = False,
         | 
| 201 | 
            +
                        use_cache: bool = False,
         | 
| 202 | 
            +
                ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
         | 
| 203 | 
            +
                    bsz, q_len, _ = hidden_states.size()
         | 
| 204 | 
            +
             | 
| 205 | 
            +
                    proj = self.W_pack(hidden_states)
         | 
| 206 | 
            +
                    proj = proj.unflatten(-1, (3, self.hidden_size)).unsqueeze(0).transpose(0, -2).squeeze(-2)
         | 
| 207 | 
            +
                    query_states = proj[0].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 208 | 
            +
                    key_states = proj[1].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 209 | 
            +
                    value_states = proj[2].view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                    kv_seq_len = key_states.shape[-2]
         | 
| 212 | 
            +
                    if past_key_value is not None:
         | 
| 213 | 
            +
                        kv_seq_len += past_key_value[0].shape[-2]
         | 
| 214 | 
            +
                    cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
         | 
| 215 | 
            +
                    query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
         | 
| 216 | 
            +
                    # [bsz, nh, t, hd]
         | 
| 217 | 
            +
             | 
| 218 | 
            +
                    if past_key_value is not None:
         | 
| 219 | 
            +
                        # reuse k, v, self_attention
         | 
| 220 | 
            +
                        key_states = torch.cat([past_key_value[0], key_states], dim=2)
         | 
| 221 | 
            +
                        value_states = torch.cat([past_key_value[1], value_states], dim=2)
         | 
| 222 | 
            +
             | 
| 223 | 
            +
                    past_key_value = (key_states, value_states) if use_cache else None
         | 
| 224 | 
            +
                    if xops is not None and self.training:
         | 
| 225 | 
            +
                        attn_weights = None
         | 
| 226 | 
            +
                        query_states = query_states.transpose(1, 2)
         | 
| 227 | 
            +
                        key_states = key_states.transpose(1, 2)
         | 
| 228 | 
            +
                        value_states = value_states.transpose(1, 2)
         | 
| 229 | 
            +
                        attn_output = xops.memory_efficient_attention(
         | 
| 230 | 
            +
                            query_states, key_states, value_states, attn_bias=xops.LowerTriangularMask()
         | 
| 231 | 
            +
                        )
         | 
| 232 | 
            +
                    else:
         | 
| 233 | 
            +
                        with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
         | 
| 234 | 
            +
                            attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask = attention_mask)
         | 
| 235 | 
            +
                        attn_output = attn_output.transpose(1, 2)
         | 
| 236 | 
            +
                    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
         | 
| 237 | 
            +
                    attn_output = self.o_proj(attn_output)
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    if not output_attentions:
         | 
| 240 | 
            +
                        attn_weights = None
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    return attn_output, attn_weights, past_key_value
         | 
| 243 | 
            +
             | 
| 244 | 
            +
             | 
| 245 | 
            +
            class DecoderLayer(nn.Module):
         | 
| 246 | 
            +
                def __init__(self, config: BaichuanConfig):
         | 
| 247 | 
            +
                    super().__init__()
         | 
| 248 | 
            +
                    self.hidden_size = config.hidden_size
         | 
| 249 | 
            +
                    self.self_attn = Attention(config=config)
         | 
| 250 | 
            +
                    self.mlp = MLP(
         | 
| 251 | 
            +
                        hidden_size=self.hidden_size,
         | 
| 252 | 
            +
                        intermediate_size=config.intermediate_size,
         | 
| 253 | 
            +
                        hidden_act=config.hidden_act,
         | 
| 254 | 
            +
                    )
         | 
| 255 | 
            +
                    self.input_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 256 | 
            +
                    self.post_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 257 | 
            +
             | 
| 258 | 
            +
                def forward(
         | 
| 259 | 
            +
                        self,
         | 
| 260 | 
            +
                        hidden_states: torch.Tensor,
         | 
| 261 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 262 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 263 | 
            +
                        past_key_value: Optional[Tuple[torch.Tensor]] = None,
         | 
| 264 | 
            +
                        output_attentions: Optional[bool] = False,
         | 
| 265 | 
            +
                        use_cache: Optional[bool] = False,
         | 
| 266 | 
            +
                ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    residual = hidden_states
         | 
| 269 | 
            +
             | 
| 270 | 
            +
                    hidden_states = self.input_layernorm(hidden_states)
         | 
| 271 | 
            +
             | 
| 272 | 
            +
                    # Self Attention
         | 
| 273 | 
            +
                    hidden_states, self_attn_weights, present_key_value = self.self_attn(
         | 
| 274 | 
            +
                        hidden_states=hidden_states,
         | 
| 275 | 
            +
                        attention_mask=attention_mask,
         | 
| 276 | 
            +
                        position_ids=position_ids,
         | 
| 277 | 
            +
                        past_key_value=past_key_value,
         | 
| 278 | 
            +
                        output_attentions=output_attentions,
         | 
| 279 | 
            +
                        use_cache=use_cache,
         | 
| 280 | 
            +
                    )
         | 
| 281 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 282 | 
            +
             | 
| 283 | 
            +
                    # Fully Connected
         | 
| 284 | 
            +
                    residual = hidden_states
         | 
| 285 | 
            +
                    hidden_states = self.post_attention_layernorm(hidden_states)
         | 
| 286 | 
            +
                    hidden_states = self.mlp(hidden_states)
         | 
| 287 | 
            +
                    hidden_states = residual + hidden_states
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                    outputs = (hidden_states,)
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                    if output_attentions:
         | 
| 292 | 
            +
                        outputs += (self_attn_weights,)
         | 
| 293 | 
            +
             | 
| 294 | 
            +
                    if use_cache:
         | 
| 295 | 
            +
                        outputs += (present_key_value,)
         | 
| 296 | 
            +
             | 
| 297 | 
            +
                    return outputs
         | 
| 298 | 
            +
             | 
| 299 | 
            +
             | 
| 300 | 
            +
            class BaichuanPreTrainedModel(PreTrainedModel):
         | 
| 301 | 
            +
                config_class = BaichuanConfig
         | 
| 302 | 
            +
                base_model_prefix = "model"
         | 
| 303 | 
            +
                supports_gradient_checkpointing = True
         | 
| 304 | 
            +
                _no_split_modules = ["DecoderLayer"]
         | 
| 305 | 
            +
                _keys_to_ignore_on_load_unexpected = [r"decoder\.version"]
         | 
| 306 | 
            +
             | 
| 307 | 
            +
                def _init_weights(self, module):
         | 
| 308 | 
            +
                    std = self.config.initializer_range
         | 
| 309 | 
            +
                    if isinstance(module, nn.Linear):
         | 
| 310 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 311 | 
            +
                        if module.bias is not None:
         | 
| 312 | 
            +
                            module.bias.data.zero_()
         | 
| 313 | 
            +
                    elif isinstance(module, nn.Embedding):
         | 
| 314 | 
            +
                        module.weight.data.normal_(mean=0.0, std=std)
         | 
| 315 | 
            +
                        if module.padding_idx is not None:
         | 
| 316 | 
            +
                            module.weight.data[module.padding_idx].zero_()
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                def _set_gradient_checkpointing(self, module, value=False):
         | 
| 319 | 
            +
                    if isinstance(module, BaichuanModel):
         | 
| 320 | 
            +
                        module.gradient_checkpointing = value
         | 
| 321 | 
            +
             | 
| 322 | 
            +
             | 
| 323 | 
            +
            class BaichuanModel(BaichuanPreTrainedModel):
         | 
| 324 | 
            +
                def __init__(self, config: BaichuanConfig):
         | 
| 325 | 
            +
                    super().__init__(config)
         | 
| 326 | 
            +
                    self.padding_idx = config.pad_token_id
         | 
| 327 | 
            +
                    self.vocab_size = config.vocab_size
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
         | 
| 330 | 
            +
                    self.layers = nn.ModuleList([DecoderLayer(config) for _ in range(config.num_hidden_layers)])
         | 
| 331 | 
            +
                    self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
         | 
| 332 | 
            +
             | 
| 333 | 
            +
                    self.gradient_checkpointing = False
         | 
| 334 | 
            +
                    # Initialize weights and apply final processing
         | 
| 335 | 
            +
                    self.post_init()
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                def get_input_embeddings(self):
         | 
| 338 | 
            +
                    return self.embed_tokens
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                def set_input_embeddings(self, value):
         | 
| 341 | 
            +
                    self.embed_tokens = value
         | 
| 342 | 
            +
             | 
| 343 | 
            +
                # Copied from transformers.models.bart.modeling_bart.BartDecoder._prepare_decoder_attention_mask
         | 
| 344 | 
            +
                def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
         | 
| 345 | 
            +
                    # create causal mask
         | 
| 346 | 
            +
                    # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 347 | 
            +
                    combined_attention_mask = None
         | 
| 348 | 
            +
                    if input_shape[-1] > 1:
         | 
| 349 | 
            +
                        combined_attention_mask = _make_causal_mask(
         | 
| 350 | 
            +
                            input_shape,
         | 
| 351 | 
            +
                            inputs_embeds.dtype,
         | 
| 352 | 
            +
                            device=inputs_embeds.device,
         | 
| 353 | 
            +
                            past_key_values_length=past_key_values_length,
         | 
| 354 | 
            +
                        )
         | 
| 355 | 
            +
             | 
| 356 | 
            +
                    if attention_mask is not None:
         | 
| 357 | 
            +
                        # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
         | 
| 358 | 
            +
                        expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(
         | 
| 359 | 
            +
                            inputs_embeds.device
         | 
| 360 | 
            +
                        )
         | 
| 361 | 
            +
                        combined_attention_mask = (
         | 
| 362 | 
            +
                            expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
         | 
| 363 | 
            +
                        )
         | 
| 364 | 
            +
             | 
| 365 | 
            +
                    return combined_attention_mask
         | 
| 366 | 
            +
             | 
| 367 | 
            +
                def forward(
         | 
| 368 | 
            +
                        self,
         | 
| 369 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 370 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 371 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 372 | 
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 373 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 374 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 375 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 376 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 377 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 378 | 
            +
                ) -> Union[Tuple, BaseModelOutputWithPast]:
         | 
| 379 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 380 | 
            +
                    output_hidden_states = (
         | 
| 381 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 382 | 
            +
                    )
         | 
| 383 | 
            +
                    use_cache = use_cache if use_cache is not None else self.config.use_cache
         | 
| 384 | 
            +
             | 
| 385 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 386 | 
            +
             | 
| 387 | 
            +
                    # retrieve input_ids and inputs_embeds
         | 
| 388 | 
            +
                    if input_ids is not None and inputs_embeds is not None:
         | 
| 389 | 
            +
                        raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
         | 
| 390 | 
            +
                    elif input_ids is not None:
         | 
| 391 | 
            +
                        batch_size, seq_length = input_ids.shape
         | 
| 392 | 
            +
                    elif inputs_embeds is not None:
         | 
| 393 | 
            +
                        batch_size, seq_length, _ = inputs_embeds.shape
         | 
| 394 | 
            +
                    else:
         | 
| 395 | 
            +
                        raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                    seq_length_with_past = seq_length
         | 
| 398 | 
            +
                    past_key_values_length = 0
         | 
| 399 | 
            +
             | 
| 400 | 
            +
                    if past_key_values is not None:
         | 
| 401 | 
            +
                        past_key_values_length = past_key_values[0][0].shape[2]
         | 
| 402 | 
            +
                        seq_length_with_past = seq_length_with_past + past_key_values_length
         | 
| 403 | 
            +
             | 
| 404 | 
            +
                    if position_ids is None:
         | 
| 405 | 
            +
                        device = input_ids.device if input_ids is not None else inputs_embeds.device
         | 
| 406 | 
            +
                        position_ids = torch.arange(
         | 
| 407 | 
            +
                            past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
         | 
| 408 | 
            +
                        )
         | 
| 409 | 
            +
                        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
         | 
| 410 | 
            +
                    else:
         | 
| 411 | 
            +
                        position_ids = position_ids.view(-1, seq_length).long()
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    if inputs_embeds is None:
         | 
| 414 | 
            +
                        inputs_embeds = self.embed_tokens(input_ids)
         | 
| 415 | 
            +
                    # embed positions
         | 
| 416 | 
            +
                    if attention_mask is None:
         | 
| 417 | 
            +
                        attention_mask = torch.ones(
         | 
| 418 | 
            +
                            (batch_size, seq_length_with_past), dtype=torch.bool, device=inputs_embeds.device
         | 
| 419 | 
            +
                        )
         | 
| 420 | 
            +
                    attention_mask = self._prepare_decoder_attention_mask(
         | 
| 421 | 
            +
                        attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
         | 
| 422 | 
            +
                    )
         | 
| 423 | 
            +
             | 
| 424 | 
            +
                    hidden_states = inputs_embeds
         | 
| 425 | 
            +
             | 
| 426 | 
            +
                    if self.gradient_checkpointing and self.training:
         | 
| 427 | 
            +
                        if use_cache:
         | 
| 428 | 
            +
                            logger.warning_once(
         | 
| 429 | 
            +
                                "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
         | 
| 430 | 
            +
                            )
         | 
| 431 | 
            +
                            use_cache = False
         | 
| 432 | 
            +
             | 
| 433 | 
            +
                    # decoder layers
         | 
| 434 | 
            +
                    all_hidden_states = () if output_hidden_states else None
         | 
| 435 | 
            +
                    all_self_attns = () if output_attentions else None
         | 
| 436 | 
            +
                    next_decoder_cache = () if use_cache else None
         | 
| 437 | 
            +
             | 
| 438 | 
            +
                    for idx, decoder_layer in enumerate(self.layers):
         | 
| 439 | 
            +
                        if output_hidden_states:
         | 
| 440 | 
            +
                            all_hidden_states += (hidden_states,)
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                        past_key_value = past_key_values[idx] if past_key_values is not None else None
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                        if self.gradient_checkpointing and self.training:
         | 
| 445 | 
            +
             | 
| 446 | 
            +
                            def create_custom_forward(module):
         | 
| 447 | 
            +
                                def custom_forward(*inputs):
         | 
| 448 | 
            +
                                    # None for past_key_value
         | 
| 449 | 
            +
                                    return module(*inputs, output_attentions, None)
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                                return custom_forward
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                            layer_outputs = torch.utils.checkpoint.checkpoint(
         | 
| 454 | 
            +
                                create_custom_forward(decoder_layer),
         | 
| 455 | 
            +
                                hidden_states,
         | 
| 456 | 
            +
                                attention_mask,
         | 
| 457 | 
            +
                                position_ids,
         | 
| 458 | 
            +
                                None,
         | 
| 459 | 
            +
                            )
         | 
| 460 | 
            +
                        else:
         | 
| 461 | 
            +
                            layer_outputs = decoder_layer(
         | 
| 462 | 
            +
                                hidden_states,
         | 
| 463 | 
            +
                                attention_mask=attention_mask,
         | 
| 464 | 
            +
                                position_ids=position_ids,
         | 
| 465 | 
            +
                                past_key_value=past_key_value,
         | 
| 466 | 
            +
                                output_attentions=output_attentions,
         | 
| 467 | 
            +
                                use_cache=use_cache,
         | 
| 468 | 
            +
                            )
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                        hidden_states = layer_outputs[0]
         | 
| 471 | 
            +
             | 
| 472 | 
            +
                        if use_cache:
         | 
| 473 | 
            +
                            next_decoder_cache += (layer_outputs[2 if output_attentions else 1],)
         | 
| 474 | 
            +
             | 
| 475 | 
            +
                        if output_attentions:
         | 
| 476 | 
            +
                            all_self_attns += (layer_outputs[1],)
         | 
| 477 | 
            +
             | 
| 478 | 
            +
                    hidden_states = self.norm(hidden_states)
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                    # add hidden states from the last decoder layer
         | 
| 481 | 
            +
                    if output_hidden_states:
         | 
| 482 | 
            +
                        all_hidden_states += (hidden_states,)
         | 
| 483 | 
            +
             | 
| 484 | 
            +
                    next_cache = next_decoder_cache if use_cache else None
         | 
| 485 | 
            +
                    if not return_dict:
         | 
| 486 | 
            +
                        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
         | 
| 487 | 
            +
                    return BaseModelOutputWithPast(
         | 
| 488 | 
            +
                        last_hidden_state=hidden_states,
         | 
| 489 | 
            +
                        past_key_values=next_cache,
         | 
| 490 | 
            +
                        hidden_states=all_hidden_states,
         | 
| 491 | 
            +
                        attentions=all_self_attns,
         | 
| 492 | 
            +
                    )
         | 
| 493 | 
            +
             | 
| 494 | 
            +
             | 
| 495 | 
            +
            class NormHead(nn.Module):
         | 
| 496 | 
            +
                def __init__(self, hidden_size, vocab_size, bias=False):
         | 
| 497 | 
            +
                    super().__init__()
         | 
| 498 | 
            +
                    self.weight = nn.Parameter(torch.empty((vocab_size, hidden_size)))
         | 
| 499 | 
            +
                    nn.init.kaiming_uniform_(self.weight, a=math.sqrt(5))
         | 
| 500 | 
            +
                    self.first_flag = True
         | 
| 501 | 
            +
             | 
| 502 | 
            +
                def forward(self, hidden_states):
         | 
| 503 | 
            +
                    if self.training:
         | 
| 504 | 
            +
                        norm_weight = nn.functional.normalize(self.weight)
         | 
| 505 | 
            +
                    elif self.first_flag:
         | 
| 506 | 
            +
                        self.first_flag = False
         | 
| 507 | 
            +
                        self.weight = nn.Parameter(nn.functional.normalize(self.weight))
         | 
| 508 | 
            +
                        norm_weight = self.weight
         | 
| 509 | 
            +
                    else:
         | 
| 510 | 
            +
                        norm_weight = self.weight
         | 
| 511 | 
            +
                    return nn.functional.linear(hidden_states, norm_weight)
         | 
| 512 | 
            +
             | 
| 513 | 
            +
            _init_weights = True
         | 
| 514 | 
            +
            @contextmanager
         | 
| 515 | 
            +
            def no_init_weights(_enable=True):
         | 
| 516 | 
            +
                global _init_weights
         | 
| 517 | 
            +
                old_init_weights = _init_weights
         | 
| 518 | 
            +
                if _enable:
         | 
| 519 | 
            +
                    _init_weights = False
         | 
| 520 | 
            +
                try:
         | 
| 521 | 
            +
                    yield
         | 
| 522 | 
            +
                finally:
         | 
| 523 | 
            +
                    _init_weights = old_init_weights
         | 
| 524 | 
            +
             | 
| 525 | 
            +
            class BaichuanForCausalLM(BaichuanPreTrainedModel):
         | 
| 526 | 
            +
                def __init__(self, config, *model_args, **model_kwargs):
         | 
| 527 | 
            +
                    super().__init__(config, *model_args, **model_kwargs)
         | 
| 528 | 
            +
                    self.model = BaichuanModel(config)
         | 
| 529 | 
            +
             | 
| 530 | 
            +
                    self.lm_head = NormHead(config.hidden_size, config.vocab_size, bias=False)
         | 
| 531 | 
            +
                    if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
         | 
| 532 | 
            +
                        try:
         | 
| 533 | 
            +
                            from .quantizer import quantize_offline, init_model_weight_int4
         | 
| 534 | 
            +
                        except ImportError:
         | 
| 535 | 
            +
                            raise ImportError(f"Needs QLinear to run quantize.")
         | 
| 536 | 
            +
                        quantize_offline(self, 4)
         | 
| 537 | 
            +
                    # Initialize weights and apply final processing
         | 
| 538 | 
            +
                    self.post_init()
         | 
| 539 | 
            +
             | 
| 540 | 
            +
                def get_input_embeddings(self):
         | 
| 541 | 
            +
                    return self.model.embed_tokens
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                def set_input_embeddings(self, value):
         | 
| 544 | 
            +
                    self.model.embed_tokens = value
         | 
| 545 | 
            +
             | 
| 546 | 
            +
                def get_output_embeddings(self):
         | 
| 547 | 
            +
                    return self.lm_head
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                def set_output_embeddings(self, new_embeddings):
         | 
| 550 | 
            +
                    self.lm_head = new_embeddings
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                def set_decoder(self, decoder):
         | 
| 553 | 
            +
                    self.model = decoder
         | 
| 554 | 
            +
             | 
| 555 | 
            +
                def get_decoder(self):
         | 
| 556 | 
            +
                    return self.model
         | 
| 557 | 
            +
                
         | 
| 558 | 
            +
                @classmethod
         | 
| 559 | 
            +
                def from_pretrained(
         | 
| 560 | 
            +
                    cls,
         | 
| 561 | 
            +
                    pretrained_model_name_or_path: Optional[Union[str, os.PathLike]],
         | 
| 562 | 
            +
                    *model_args,
         | 
| 563 | 
            +
                    config: Optional[Union[PretrainedConfig, str, os.PathLike]] = None,
         | 
| 564 | 
            +
                    cache_dir: Optional[Union[str, os.PathLike]] = None,
         | 
| 565 | 
            +
                    ignore_mismatched_sizes: bool = False,
         | 
| 566 | 
            +
                    force_download: bool = False,
         | 
| 567 | 
            +
                    local_files_only: bool = False,
         | 
| 568 | 
            +
                    token: Optional[Union[str, bool]] = None,
         | 
| 569 | 
            +
                    revision: str = "main",
         | 
| 570 | 
            +
                    use_safetensors: bool = None,
         | 
| 571 | 
            +
                    **kwargs,
         | 
| 572 | 
            +
                ):
         | 
| 573 | 
            +
                    # Load config if we don't provide a configuration
         | 
| 574 | 
            +
                    if not isinstance(config, PretrainedConfig):
         | 
| 575 | 
            +
                        config_path = config if config is not None else pretrained_model_name_or_path
         | 
| 576 | 
            +
                        config, model_kwargs = cls.config_class.from_pretrained(
         | 
| 577 | 
            +
                            config_path,
         | 
| 578 | 
            +
                            cache_dir=cache_dir,
         | 
| 579 | 
            +
                            return_unused_kwargs=True,
         | 
| 580 | 
            +
                            force_download=force_download,
         | 
| 581 | 
            +
                            resume_download=False,
         | 
| 582 | 
            +
                            proxies=None,
         | 
| 583 | 
            +
                            local_files_only=local_files_only,
         | 
| 584 | 
            +
                            token=token,
         | 
| 585 | 
            +
                            revision=revision,
         | 
| 586 | 
            +
                            subfolder="",
         | 
| 587 | 
            +
                            _from_auto=False,
         | 
| 588 | 
            +
                            _from_pipeline=None,
         | 
| 589 | 
            +
                            **kwargs,
         | 
| 590 | 
            +
                        )
         | 
| 591 | 
            +
                    else:
         | 
| 592 | 
            +
                        model_kwargs = kwargs
         | 
| 593 | 
            +
                    
         | 
| 594 | 
            +
                    if hasattr(config, "quantization_config") and config.quantization_config['load_in_4bit']:
         | 
| 595 | 
            +
                        try:
         | 
| 596 | 
            +
                            from .quantizer import init_model_weight_int4
         | 
| 597 | 
            +
                            from accelerate import init_empty_weights, dispatch_model, infer_auto_device_map
         | 
| 598 | 
            +
                            from accelerate.utils import CustomDtype
         | 
| 599 | 
            +
                            from accelerate.utils import get_balanced_memory
         | 
| 600 | 
            +
                        except ImportError:
         | 
| 601 | 
            +
                            raise ImportError(f"Needs import model weight init func to run quantize.") 
         | 
| 602 | 
            +
                        # Instantiate model.
         | 
| 603 | 
            +
                        init_contexts = [no_init_weights(_enable=True)]
         | 
| 604 | 
            +
                        init_contexts.append(init_empty_weights())
         | 
| 605 | 
            +
                        with ContextManagers(init_contexts):
         | 
| 606 | 
            +
                            model = cls(config)
         | 
| 607 | 
            +
                        
         | 
| 608 | 
            +
                        model_file = os.path.join(pretrained_model_name_or_path, 'pytorch_model.bin')
         | 
| 609 | 
            +
                        state_dict = torch.load(model_file, map_location="cpu") 
         | 
| 610 | 
            +
                        model.is_quantized = True
         | 
| 611 | 
            +
                                    
         | 
| 612 | 
            +
                        device_map = kwargs.pop("device_map", None)
         | 
| 613 | 
            +
                        torch_dtype = kwargs.pop("torch_dtype", None)
         | 
| 614 | 
            +
                        
         | 
| 615 | 
            +
                        kwargs = {"no_split_module_classes": model._no_split_modules}
         | 
| 616 | 
            +
                        target_dtype = CustomDtype.INT4
         | 
| 617 | 
            +
                        max_memory = get_balanced_memory(
         | 
| 618 | 
            +
                            model,
         | 
| 619 | 
            +
                            dtype=target_dtype,
         | 
| 620 | 
            +
                            low_zero=(device_map == "balanced_low_0"),
         | 
| 621 | 
            +
                            max_memory=None,
         | 
| 622 | 
            +
                            **kwargs,
         | 
| 623 | 
            +
                        )
         | 
| 624 | 
            +
                        kwargs["max_memory"] = max_memory
         | 
| 625 | 
            +
                        
         | 
| 626 | 
            +
                        device_map = infer_auto_device_map(model, dtype=target_dtype, **kwargs)
         | 
| 627 | 
            +
                        model = init_model_weight_int4(config, model, state_dict)
         | 
| 628 | 
            +
                        
         | 
| 629 | 
            +
                        # Set model in evaluation mode to deactivate DropOut modules by default
         | 
| 630 | 
            +
                        model.eval()
         | 
| 631 | 
            +
                        # If it is a model with generation capabilities, attempt to load the generation config
         | 
| 632 | 
            +
                        if model.can_generate():
         | 
| 633 | 
            +
                            try:
         | 
| 634 | 
            +
                                model.generation_config = GenerationConfig.from_pretrained(
         | 
| 635 | 
            +
                                    pretrained_model_name_or_path,
         | 
| 636 | 
            +
                                    cache_dir=cache_dir,
         | 
| 637 | 
            +
                                    force_download=force_download,
         | 
| 638 | 
            +
                                    resume_download=False,
         | 
| 639 | 
            +
                                    proxies=None,
         | 
| 640 | 
            +
                                    local_files_only=local_files_only,
         | 
| 641 | 
            +
                                    token=token,
         | 
| 642 | 
            +
                                    revision=revision,
         | 
| 643 | 
            +
                                    subfolder="",
         | 
| 644 | 
            +
                                    _from_auto=False,
         | 
| 645 | 
            +
                                    _from_pipeline=None,
         | 
| 646 | 
            +
                                    **kwargs,
         | 
| 647 | 
            +
                                )
         | 
| 648 | 
            +
                            except (OSError, TypeError):
         | 
| 649 | 
            +
                                logger.info(
         | 
| 650 | 
            +
                                    "Generation config file not found, using a generation config created from the model config."
         | 
| 651 | 
            +
                                )
         | 
| 652 | 
            +
                                pass
         | 
| 653 | 
            +
                        
         | 
| 654 | 
            +
                        if device_map is not None:
         | 
| 655 | 
            +
                            dispatch_model(model, device_map=device_map)
         | 
| 656 | 
            +
                        
         | 
| 657 | 
            +
                        return model
         | 
| 658 | 
            +
                    return super(BaichuanForCausalLM, cls).from_pretrained(pretrained_model_name_or_path, *model_args, 
         | 
| 659 | 
            +
                            config=config, cache_dir=cache_dir, ignore_mismatched_sizes=ignore_mismatched_sizes, 
         | 
| 660 | 
            +
                            force_download=force_download, local_files_only=local_files_only, token=token, revision=revision, 
         | 
| 661 | 
            +
                            use_safetensors=use_safetensors, **kwargs)   
         | 
| 662 | 
            +
             | 
| 663 | 
            +
                def forward(
         | 
| 664 | 
            +
                        self,
         | 
| 665 | 
            +
                        input_ids: torch.LongTensor = None,
         | 
| 666 | 
            +
                        attention_mask: Optional[torch.Tensor] = None,
         | 
| 667 | 
            +
                        position_ids: Optional[torch.LongTensor] = None,
         | 
| 668 | 
            +
                        past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 669 | 
            +
                        inputs_embeds: Optional[torch.FloatTensor] = None,
         | 
| 670 | 
            +
                        labels: Optional[torch.LongTensor] = None,
         | 
| 671 | 
            +
                        use_cache: Optional[bool] = None,
         | 
| 672 | 
            +
                        output_attentions: Optional[bool] = None,
         | 
| 673 | 
            +
                        output_hidden_states: Optional[bool] = None,
         | 
| 674 | 
            +
                        return_dict: Optional[bool] = None,
         | 
| 675 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 676 | 
            +
             | 
| 677 | 
            +
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 678 | 
            +
                    output_hidden_states = (
         | 
| 679 | 
            +
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| 680 | 
            +
                    )
         | 
| 681 | 
            +
                    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
         | 
| 682 | 
            +
             | 
| 683 | 
            +
                    # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
         | 
| 684 | 
            +
                    outputs = self.model(
         | 
| 685 | 
            +
                        input_ids=input_ids,
         | 
| 686 | 
            +
                        attention_mask=attention_mask,
         | 
| 687 | 
            +
                        position_ids=position_ids,
         | 
| 688 | 
            +
                        past_key_values=past_key_values,
         | 
| 689 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 690 | 
            +
                        use_cache=use_cache,
         | 
| 691 | 
            +
                        output_attentions=output_attentions,
         | 
| 692 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 693 | 
            +
                        return_dict=return_dict,
         | 
| 694 | 
            +
                    )
         | 
| 695 | 
            +
             | 
| 696 | 
            +
                    hidden_states = outputs[0]
         | 
| 697 | 
            +
                    logits = self.lm_head(hidden_states)
         | 
| 698 | 
            +
                    loss = None
         | 
| 699 | 
            +
                    if labels is not None:
         | 
| 700 | 
            +
                        # Shift so that tokens < n predict n
         | 
| 701 | 
            +
                        shift_logits = logits[..., :-1, :].contiguous()
         | 
| 702 | 
            +
                        shift_labels = labels[..., 1:].contiguous()
         | 
| 703 | 
            +
                        # Flatten the tokens
         | 
| 704 | 
            +
                        loss_fct = CrossEntropyLoss()
         | 
| 705 | 
            +
                        shift_logits = shift_logits.view(-1, self.config.vocab_size)
         | 
| 706 | 
            +
                        shift_labels = shift_labels.view(-1)
         | 
| 707 | 
            +
                        # Enable model parallelism
         | 
| 708 | 
            +
                        shift_labels = shift_labels.to(shift_logits.device)
         | 
| 709 | 
            +
                        loss = loss_fct(shift_logits, shift_labels)
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                    if not return_dict:
         | 
| 712 | 
            +
                        output = (logits,) + outputs[1:]
         | 
| 713 | 
            +
                        return (loss,) + output if loss is not None else output
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                    return CausalLMOutputWithPast(
         | 
| 716 | 
            +
                        loss=loss,
         | 
| 717 | 
            +
                        logits=logits,
         | 
| 718 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 719 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 720 | 
            +
                        attentions=outputs.attentions,
         | 
| 721 | 
            +
                    )
         | 
| 722 | 
            +
             | 
| 723 | 
            +
                def prepare_inputs_for_generation(
         | 
| 724 | 
            +
                        self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
         | 
| 725 | 
            +
                ):
         | 
| 726 | 
            +
                    if past_key_values:
         | 
| 727 | 
            +
                        input_ids = input_ids[:, -1:]
         | 
| 728 | 
            +
             | 
| 729 | 
            +
                    position_ids = kwargs.get("position_ids", None)
         | 
| 730 | 
            +
                    if attention_mask is not None and position_ids is None:
         | 
| 731 | 
            +
                        # create position_ids on the fly for batch generation
         | 
| 732 | 
            +
                        position_ids = attention_mask.long().cumsum(-1) - 1
         | 
| 733 | 
            +
                        position_ids.masked_fill_(attention_mask == 0, 1)
         | 
| 734 | 
            +
                        if past_key_values:
         | 
| 735 | 
            +
                            position_ids = position_ids[:, -1].unsqueeze(-1)
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                    # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
         | 
| 738 | 
            +
                    if inputs_embeds is not None and past_key_values is None:
         | 
| 739 | 
            +
                        model_inputs = {"inputs_embeds": inputs_embeds}
         | 
| 740 | 
            +
                    else:
         | 
| 741 | 
            +
                        model_inputs = {"input_ids": input_ids}
         | 
| 742 | 
            +
             | 
| 743 | 
            +
                    model_inputs.update(
         | 
| 744 | 
            +
                        {
         | 
| 745 | 
            +
                            "position_ids": position_ids,
         | 
| 746 | 
            +
                            "past_key_values": past_key_values,
         | 
| 747 | 
            +
                            "use_cache": kwargs.get("use_cache"),
         | 
| 748 | 
            +
                            "attention_mask": attention_mask,
         | 
| 749 | 
            +
                        }
         | 
| 750 | 
            +
                    )
         | 
| 751 | 
            +
                    return model_inputs
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                @staticmethod
         | 
| 754 | 
            +
                def _reorder_cache(past_key_values, beam_idx):
         | 
| 755 | 
            +
                    reordered_past = ()
         | 
| 756 | 
            +
                    for layer_past in past_key_values:
         | 
| 757 | 
            +
                        reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
         | 
| 758 | 
            +
                    return reordered_past
         | 
| 759 | 
            +
             | 
| 760 | 
            +
                def quantize(self, bits: int):
         | 
| 761 | 
            +
                    try:
         | 
| 762 | 
            +
                        from .quantizer import quantize_online
         | 
| 763 | 
            +
                    except ImportError:
         | 
| 764 | 
            +
                        raise ImportError(f"Needs QLinear to run quantize.")
         | 
| 765 | 
            +
                    return quantize_online(self, bits)
         | 
| 766 | 
            +
             | 
| 767 | 
            +
                def chat(self, tokenizer, messages: List[dict], stream=False,
         | 
| 768 | 
            +
                         generation_config: Optional[GenerationConfig]=None):
         | 
| 769 | 
            +
                    generation_config = generation_config or self.generation_config
         | 
| 770 | 
            +
                    input_ids = build_chat_input(self, tokenizer, messages, generation_config.max_new_tokens)
         | 
| 771 | 
            +
                    if stream:
         | 
| 772 | 
            +
                        streamer = TextIterStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
         | 
| 773 | 
            +
                        Thread(target=self.generate, kwargs=dict(
         | 
| 774 | 
            +
                            inputs=input_ids, streamer=streamer,
         | 
| 775 | 
            +
                            generation_config=generation_config,
         | 
| 776 | 
            +
                        )).start()
         | 
| 777 | 
            +
                        return streamer
         | 
| 778 | 
            +
                    else:
         | 
| 779 | 
            +
                        outputs = self.generate(input_ids, generation_config=generation_config)
         | 
| 780 | 
            +
                        response = tokenizer.decode(outputs[0][len(input_ids[0]):], skip_special_tokens=True)
         | 
| 781 | 
            +
                        return response
         | 
    	
        quantizer.py
    ADDED
    
    | @@ -0,0 +1,210 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import bitsandbytes as bnb
         | 
| 2 | 
            +
            from bitsandbytes.nn.modules import Params4bit, Int8Params
         | 
| 3 | 
            +
            import torch 
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            def Params4bitCuda(self, device):
         | 
| 6 | 
            +
                self.data = self.data.cuda(device)
         | 
| 7 | 
            +
                self.quant_state[0] = self.quant_state[0].cuda(device)
         | 
| 8 | 
            +
                self.quant_state[4][0] = self.quant_state[4][0].cuda(device)
         | 
| 9 | 
            +
                self.quant_state[4][1][0] = self.quant_state[4][1][0].cuda(device)
         | 
| 10 | 
            +
                self.quant_state[4][1][1] = self.quant_state[4][1][1].cuda(device)
         | 
| 11 | 
            +
             | 
| 12 | 
            +
                self.quant_state[6] = self.quant_state[6].cuda(device)
         | 
| 13 | 
            +
                return self
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            class Linear4bitOnline(torch.nn.Module):
         | 
| 16 | 
            +
                def __init__(self, weight, bias, quant_type):
         | 
| 17 | 
            +
                    super().__init__()
         | 
| 18 | 
            +
                    self.weight = Params4bit(
         | 
| 19 | 
            +
                        weight.data, requires_grad=False, compress_statistics=True, quant_type=quant_type
         | 
| 20 | 
            +
                    )
         | 
| 21 | 
            +
                    self.compute_dtype = None
         | 
| 22 | 
            +
                    #self.weight.cuda(weight.device)
         | 
| 23 | 
            +
                    self.bias = bias
         | 
| 24 | 
            +
             | 
| 25 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 26 | 
            +
                    # weights are cast automatically as Int8Params, but the bias has to be cast manually
         | 
| 27 | 
            +
                    if self.bias is not None and self.bias.dtype != x.dtype:
         | 
| 28 | 
            +
                        self.bias.data = self.bias.data.to(x.dtype)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
                    if getattr(self.weight, "quant_state", None) is None:
         | 
| 31 | 
            +
                        print(
         | 
| 32 | 
            +
                            "FP4 quantization state not initialized. Please call .cuda() or .to(device) on the LinearFP4 layer first."
         | 
| 33 | 
            +
                        )
         | 
| 34 | 
            +
                    inp_dtype = x.dtype
         | 
| 35 | 
            +
                    if self.compute_dtype is not None:
         | 
| 36 | 
            +
                        x = x.to(self.compute_dtype)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
                    bias = None if self.bias is None else self.bias.to(self.compute_dtype)
         | 
| 39 | 
            +
                    out = bnb.matmul_4bit(
         | 
| 40 | 
            +
                        x, self.weight.t(), bias=bias, quant_state=self.weight.quant_state
         | 
| 41 | 
            +
                    )
         | 
| 42 | 
            +
             | 
| 43 | 
            +
                    out = out.to(inp_dtype)
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    return out
         | 
| 46 | 
            +
                
         | 
| 47 | 
            +
            class Linear8bitLtOnline(torch.nn.Module):
         | 
| 48 | 
            +
                def __init__(
         | 
| 49 | 
            +
                    self,
         | 
| 50 | 
            +
                    weight,
         | 
| 51 | 
            +
                    bias,
         | 
| 52 | 
            +
                    has_fp16_weights=True,
         | 
| 53 | 
            +
                    memory_efficient_backward=False,
         | 
| 54 | 
            +
                    threshold=0.0,
         | 
| 55 | 
            +
                    index=None,
         | 
| 56 | 
            +
                ):
         | 
| 57 | 
            +
                    super().__init__()
         | 
| 58 | 
            +
                    assert (
         | 
| 59 | 
            +
                        not memory_efficient_backward
         | 
| 60 | 
            +
                    ), "memory_efficient_backward is no longer required and the argument is deprecated in 0.37.0 and will be removed in 0.39.0"
         | 
| 61 | 
            +
                    self.state = bnb.MatmulLtState()
         | 
| 62 | 
            +
                    self.index = index
         | 
| 63 | 
            +
             | 
| 64 | 
            +
                    # Necessary for stacked layers
         | 
| 65 | 
            +
                    self.state.threshold = threshold
         | 
| 66 | 
            +
                    self.state.has_fp16_weights = has_fp16_weights
         | 
| 67 | 
            +
                    self.state.memory_efficient_backward = memory_efficient_backward
         | 
| 68 | 
            +
                    if threshold > 0.0 and not has_fp16_weights:
         | 
| 69 | 
            +
                        self.state.use_pool = True
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    self.weight = Int8Params(
         | 
| 72 | 
            +
                        weight.data,
         | 
| 73 | 
            +
                        has_fp16_weights=has_fp16_weights,
         | 
| 74 | 
            +
                        requires_grad=has_fp16_weights,
         | 
| 75 | 
            +
                    )
         | 
| 76 | 
            +
                    self.bias = bias
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                def init_8bit_state(self):
         | 
| 79 | 
            +
                    self.state.CB = self.weight.CB
         | 
| 80 | 
            +
                    self.state.SCB = self.weight.SCB
         | 
| 81 | 
            +
                    self.weight.CB = None
         | 
| 82 | 
            +
                    self.weight.SCB = None
         | 
| 83 | 
            +
             | 
| 84 | 
            +
                def forward(self, x: torch.Tensor):
         | 
| 85 | 
            +
                    self.state.is_training = self.training
         | 
| 86 | 
            +
                    if self.weight.CB is not None:
         | 
| 87 | 
            +
                        self.init_8bit_state()
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                    # weights are cast automatically as Int8Params, but the bias has to be cast manually
         | 
| 90 | 
            +
                    if self.bias is not None and self.bias.dtype != x.dtype:
         | 
| 91 | 
            +
                        self.bias.data = self.bias.data.to(x.dtype)
         | 
| 92 | 
            +
                    
         | 
| 93 | 
            +
                    out = bnb.matmul(x, self.weight, bias=self.bias, state=self.state)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                    if not self.state.has_fp16_weights:
         | 
| 96 | 
            +
                        if self.state.CB is not None and self.state.CxB is not None:
         | 
| 97 | 
            +
                            # we converted 8-bit row major to turing/ampere format in the first inference pass
         | 
| 98 | 
            +
                            # we no longer need the row-major weight
         | 
| 99 | 
            +
                            del self.state.CB
         | 
| 100 | 
            +
                            self.weight.data = self.state.CxB
         | 
| 101 | 
            +
                    return out
         | 
| 102 | 
            +
                
         | 
| 103 | 
            +
            def quantize_offline(model, bits: int):
         | 
| 104 | 
            +
                assert (bits == 4), f'bits: {bits} is not supported'
         | 
| 105 | 
            +
                
         | 
| 106 | 
            +
                for i, layer in enumerate(model.model.layers):
         | 
| 107 | 
            +
                    layer.self_attn.W_pack = bnb.nn.Linear4bit(
         | 
| 108 | 
            +
                                        layer.self_attn.W_pack.weight.shape[1],
         | 
| 109 | 
            +
                                        layer.self_attn.W_pack.weight.shape[0],
         | 
| 110 | 
            +
                                        False,
         | 
| 111 | 
            +
                                        torch.float16,
         | 
| 112 | 
            +
                                        compress_statistics=True,
         | 
| 113 | 
            +
                                        quant_type="nf4",
         | 
| 114 | 
            +
                                    )
         | 
| 115 | 
            +
                    layer.self_attn.o_proj = bnb.nn.Linear4bit(
         | 
| 116 | 
            +
                                        layer.self_attn.o_proj.weight.shape[1],
         | 
| 117 | 
            +
                                        layer.self_attn.o_proj.weight.shape[0],
         | 
| 118 | 
            +
                                        False,
         | 
| 119 | 
            +
                                        torch.float16,
         | 
| 120 | 
            +
                                        compress_statistics=True,
         | 
| 121 | 
            +
                                        quant_type="nf4",
         | 
| 122 | 
            +
                                    )
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    layer.mlp.gate_proj = bnb.nn.Linear4bit(
         | 
| 125 | 
            +
                                        layer.mlp.gate_proj.weight.shape[1],
         | 
| 126 | 
            +
                                        layer.mlp.gate_proj.weight.shape[0],
         | 
| 127 | 
            +
                                        False,
         | 
| 128 | 
            +
                                        torch.float16,
         | 
| 129 | 
            +
                                        compress_statistics=True,
         | 
| 130 | 
            +
                                        quant_type="nf4",
         | 
| 131 | 
            +
                                    )
         | 
| 132 | 
            +
                    layer.mlp.down_proj = bnb.nn.Linear4bit(
         | 
| 133 | 
            +
                                        layer.mlp.down_proj.weight.shape[1],
         | 
| 134 | 
            +
                                        layer.mlp.down_proj.weight.shape[0],
         | 
| 135 | 
            +
                                        False,
         | 
| 136 | 
            +
                                        torch.float16,
         | 
| 137 | 
            +
                                        compress_statistics=True,
         | 
| 138 | 
            +
                                        quant_type="nf4",
         | 
| 139 | 
            +
                                    )
         | 
| 140 | 
            +
                    layer.mlp.up_proj = bnb.nn.Linear4bit(
         | 
| 141 | 
            +
                                        layer.mlp.up_proj.weight.shape[1],
         | 
| 142 | 
            +
                                        layer.mlp.up_proj.weight.shape[0],
         | 
| 143 | 
            +
                                        False,
         | 
| 144 | 
            +
                                        torch.float16,
         | 
| 145 | 
            +
                                        compress_statistics=True,
         | 
| 146 | 
            +
                                        quant_type="nf4",
         | 
| 147 | 
            +
                                    )
         | 
| 148 | 
            +
                return model
         | 
| 149 | 
            +
             | 
| 150 | 
            +
            def quantize_online(model, bits: int):
         | 
| 151 | 
            +
                def quant(weight, bias=None):
         | 
| 152 | 
            +
                    if bits == 8:
         | 
| 153 | 
            +
                        linear = Linear8bitLtOnline(
         | 
| 154 | 
            +
                            weight,
         | 
| 155 | 
            +
                            bias,
         | 
| 156 | 
            +
                            has_fp16_weights=False,
         | 
| 157 | 
            +
                            threshold=6.0,
         | 
| 158 | 
            +
                        )
         | 
| 159 | 
            +
                        if bias is not None:
         | 
| 160 | 
            +
                            linear.bias = torch.nn.Parameter(bias)
         | 
| 161 | 
            +
                    elif bits == 4:
         | 
| 162 | 
            +
                        linear = Linear4bitOnline(
         | 
| 163 | 
            +
                            weight,
         | 
| 164 | 
            +
                            bias,
         | 
| 165 | 
            +
                            quant_type="nf4", #fp4/nf4
         | 
| 166 | 
            +
                        )
         | 
| 167 | 
            +
                    else:
         | 
| 168 | 
            +
                        raise ValueError("quantize only support 4/8 bit")
         | 
| 169 | 
            +
                    return linear
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                for i, layer in enumerate(model.model.layers):
         | 
| 172 | 
            +
                    layer.self_attn.W_pack = quant(layer.self_attn.W_pack.weight)
         | 
| 173 | 
            +
                    layer.self_attn.o_proj = quant(layer.self_attn.o_proj.weight)
         | 
| 174 | 
            +
                    layer.mlp.gate_proj = quant(layer.mlp.gate_proj.weight)
         | 
| 175 | 
            +
                    layer.mlp.down_proj = quant(layer.mlp.down_proj.weight)
         | 
| 176 | 
            +
                    layer.mlp.up_proj = quant(layer.mlp.up_proj.weight)
         | 
| 177 | 
            +
                return model
         | 
| 178 | 
            +
             | 
| 179 | 
            +
            def init_model_weight_int4(config, model, state_dict):
         | 
| 180 | 
            +
                #replace Params4bit.cuda with Params4bitCuda
         | 
| 181 | 
            +
                Params4bit.cuda = Params4bitCuda
         | 
| 182 | 
            +
             | 
| 183 | 
            +
                for i in range(config.num_hidden_layers):
         | 
| 184 | 
            +
                    weight_data = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.data']
         | 
| 185 | 
            +
                    weight_quant_state = state_dict[f'model.layers.{i}.self_attn.W_pack.weight.quant_state']
         | 
| 186 | 
            +
                    model.model.layers[i].self_attn.W_pack.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
         | 
| 187 | 
            +
                    
         | 
| 188 | 
            +
                    weight_data = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.data']
         | 
| 189 | 
            +
                    weight_quant_state = state_dict[f'model.layers.{i}.self_attn.o_proj.weight.quant_state']
         | 
| 190 | 
            +
                    model.model.layers[i].self_attn.o_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
         | 
| 191 | 
            +
                    
         | 
| 192 | 
            +
                    weight_data = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.data']
         | 
| 193 | 
            +
                    weight_quant_state = state_dict[f'model.layers.{i}.mlp.gate_proj.weight.quant_state']
         | 
| 194 | 
            +
                    model.model.layers[i].mlp.gate_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
         | 
| 195 | 
            +
                    
         | 
| 196 | 
            +
                    weight_data = state_dict[f'model.layers.{i}.mlp.up_proj.weight.data']
         | 
| 197 | 
            +
                    weight_quant_state = state_dict[f'model.layers.{i}.mlp.up_proj.weight.quant_state']
         | 
| 198 | 
            +
                    model.model.layers[i].mlp.up_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
         | 
| 199 | 
            +
                    
         | 
| 200 | 
            +
                    weight_data = state_dict[f'model.layers.{i}.mlp.down_proj.weight.data']
         | 
| 201 | 
            +
                    weight_quant_state = state_dict[f'model.layers.{i}.mlp.down_proj.weight.quant_state']
         | 
| 202 | 
            +
                    model.model.layers[i].mlp.down_proj.weight = Params4bit(weight_data, requires_grad=False, quant_state=weight_quant_state)
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    model.model.layers[i].input_layernorm.weight = state_dict[f'model.layers.{i}.input_layernorm.weight']
         | 
| 205 | 
            +
                    model.model.layers[i].post_attention_layernorm.weight = state_dict[f'model.layers.{i}.post_attention_layernorm.weight']
         | 
| 206 | 
            +
                
         | 
| 207 | 
            +
                model.model.embed_tokens.weight = state_dict['model.embed_tokens.weight']
         | 
| 208 | 
            +
                model.model.norm.weight = state_dict['model.norm.weight']
         | 
| 209 | 
            +
                model.lm_head.weight = state_dict['lm_head.weight'] 
         | 
| 210 | 
            +
                return model
         |