all-MiniLM-L6-v8-pair_score
This is a sentence-transformers model finetuned from Remonatef/pairs_with_scores_sampled_category_v25.1 on the pairs_three_scores_v8 dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
 - Base model: Remonatef/pairs_with_scores_sampled_category_v25.1
 - Maximum Sequence Length: 256 tokens
 - Output Dimensionality: 384 dimensions
 - Similarity Function: Cosine Similarity
 - Training Dataset:
 - Language: en
 - License: apache-2.0
 
Model Sources
- Documentation: Sentence Transformers Documentation
 - Repository: Sentence Transformers on GitHub
 - Hugging Face: Sentence Transformers on Hugging Face
 
Full Model Architecture
SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'pasabah',
    'thermos mug',
    'sports tracksuit',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.8039, 0.5806],
#         [0.8039, 1.0000, 0.5902],
#         [0.5806, 0.5902, 1.0000]])
Training Details
Training Dataset
pairs_three_scores_v8
- Dataset: pairs_three_scores_v8 at 7e8a1e6
 - Size: 9,164,180 training samples
 - Columns: 
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
 - mean: 5.6 tokens
 - max: 20 tokens
 
- min: 3 tokens
 - mean: 5.79 tokens
 - max: 24 tokens
 
- min: 0.15
 - mean: 0.43
 - max: 1.0
 
 - Samples:
sentence1 sentence2 score booster face cleanserpizza cutter0.24line sinkeraccessories1.0tricovelcot bed mattress protector0.28 - Loss: 
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } 
Evaluation Dataset
pairs_three_scores_v8
- Dataset: pairs_three_scores_v8 at 7e8a1e6
 - Size: 46,052 evaluation samples
 - Columns: 
sentence1,sentence2, andscore - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 3 tokens
 - mean: 5.66 tokens
 - max: 21 tokens
 
- min: 3 tokens
 - mean: 5.6 tokens
 - max: 41 tokens
 
- min: 0.15
 - mean: 0.42
 - max: 1.0
 
 - Samples:
sentence1 sentence2 score printed setcrushed outfit1.0valueeva cosmetics serum0.23zino shakescandy0.27 - Loss: 
CoSENTLosswith these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } 
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 2e-05num_train_epochs: 2warmup_ratio: 0.1fp16: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 2e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 2max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
Click to expand
| Epoch | Step | Training Loss | 
|---|---|---|
| 0.0014 | 100 | 8.8538 | 
| 0.0028 | 200 | 8.8627 | 
| 0.0042 | 300 | 8.6961 | 
| 0.0056 | 400 | 8.5595 | 
| 0.0070 | 500 | 8.5157 | 
| 0.0084 | 600 | 8.4187 | 
| 0.0098 | 700 | 8.3768 | 
| 0.0112 | 800 | 8.3611 | 
| 0.0126 | 900 | 8.2891 | 
| 0.0140 | 1000 | 8.2687 | 
| 0.0154 | 1100 | 8.2398 | 
| 0.0168 | 1200 | 8.2112 | 
| 0.0182 | 1300 | 8.1916 | 
| 0.0196 | 1400 | 8.1942 | 
| 0.0210 | 1500 | 8.172 | 
| 0.0223 | 1600 | 8.1808 | 
| 0.0237 | 1700 | 8.153 | 
| 0.0251 | 1800 | 8.1209 | 
| 0.0265 | 1900 | 8.1309 | 
| 0.0279 | 2000 | 8.1563 | 
| 0.0293 | 2100 | 8.1438 | 
| 0.0307 | 2200 | 8.1089 | 
| 0.0321 | 2300 | 8.1216 | 
| 0.0335 | 2400 | 8.1216 | 
| 0.0349 | 2500 | 8.0719 | 
| 0.0363 | 2600 | 8.1142 | 
| 0.0377 | 2700 | 8.0906 | 
| 0.0391 | 2800 | 8.062 | 
| 0.0405 | 2900 | 8.0963 | 
| 0.0419 | 3000 | 8.0635 | 
| 0.0433 | 3100 | 8.065 | 
| 0.0447 | 3200 | 8.0464 | 
| 0.0461 | 3300 | 8.0614 | 
| 0.0475 | 3400 | 8.0602 | 
| 0.0489 | 3500 | 8.0672 | 
| 0.0503 | 3600 | 8.0667 | 
| 0.0517 | 3700 | 8.0249 | 
| 0.0531 | 3800 | 8.0615 | 
| 0.0545 | 3900 | 8.0482 | 
| 0.0559 | 4000 | 8.0344 | 
| 0.0573 | 4100 | 8.0474 | 
| 0.0587 | 4200 | 8.0254 | 
| 0.0601 | 4300 | 8.0358 | 
| 0.0615 | 4400 | 8.0259 | 
| 0.0629 | 4500 | 8.0242 | 
| 0.0642 | 4600 | 7.9949 | 
| 0.0656 | 4700 | 8.0489 | 
| 0.0670 | 4800 | 8.0133 | 
| 0.0684 | 4900 | 7.983 | 
| 0.0698 | 5000 | 7.9952 | 
| 0.0712 | 5100 | 7.9972 | 
| 0.0726 | 5200 | 7.9932 | 
| 0.0740 | 5300 | 7.9921 | 
| 0.0754 | 5400 | 8.0143 | 
| 0.0768 | 5500 | 7.9816 | 
| 0.0782 | 5600 | 7.9691 | 
| 0.0796 | 5700 | 8.0094 | 
| 0.0810 | 5800 | 7.9749 | 
| 0.0824 | 5900 | 7.9938 | 
| 0.0838 | 6000 | 7.9718 | 
| 0.0852 | 6100 | 7.9842 | 
| 0.0866 | 6200 | 7.9649 | 
| 0.0880 | 6300 | 7.9719 | 
| 0.0894 | 6400 | 7.9676 | 
| 0.0908 | 6500 | 7.9628 | 
| 0.0922 | 6600 | 7.9626 | 
| 0.0936 | 6700 | 7.9601 | 
| 0.0950 | 6800 | 7.974 | 
| 0.0964 | 6900 | 7.9646 | 
| 0.0978 | 7000 | 7.9379 | 
| 0.0992 | 7100 | 7.9565 | 
| 0.1006 | 7200 | 7.9388 | 
| 0.1020 | 7300 | 7.9471 | 
| 0.1034 | 7400 | 7.9171 | 
| 0.1048 | 7500 | 7.915 | 
| 0.1062 | 7600 | 7.919 | 
| 0.1075 | 7700 | 7.9579 | 
| 0.1089 | 7800 | 7.9275 | 
| 0.1103 | 7900 | 7.9273 | 
| 0.1117 | 8000 | 7.9294 | 
| 0.1131 | 8100 | 7.9233 | 
| 0.1145 | 8200 | 7.9247 | 
| 0.1159 | 8300 | 7.9166 | 
| 0.1173 | 8400 | 7.928 | 
| 0.1187 | 8500 | 7.9068 | 
| 0.1201 | 8600 | 7.919 | 
| 0.1215 | 8700 | 7.8929 | 
| 0.1229 | 8800 | 7.9122 | 
| 0.1243 | 8900 | 7.9036 | 
| 0.1257 | 9000 | 7.8954 | 
| 0.1271 | 9100 | 7.8803 | 
| 0.1285 | 9200 | 7.9096 | 
| 0.1299 | 9300 | 7.9059 | 
| 0.1313 | 9400 | 7.8716 | 
| 0.1327 | 9500 | 7.8965 | 
| 0.1341 | 9600 | 7.9248 | 
| 0.1355 | 9700 | 7.8804 | 
| 0.1369 | 9800 | 7.8841 | 
| 0.1383 | 9900 | 7.8787 | 
| 0.1397 | 10000 | 7.8671 | 
| 0.1411 | 10100 | 7.8988 | 
| 0.1425 | 10200 | 7.8662 | 
| 0.1439 | 10300 | 7.8631 | 
| 0.1453 | 10400 | 7.8759 | 
| 0.1467 | 10500 | 7.8634 | 
| 0.1481 | 10600 | 7.8621 | 
| 0.1494 | 10700 | 7.8509 | 
| 0.1508 | 10800 | 7.8437 | 
| 0.1522 | 10900 | 7.8361 | 
| 0.1536 | 11000 | 7.868 | 
| 0.1550 | 11100 | 7.8887 | 
| 0.1564 | 11200 | 7.8747 | 
| 0.1578 | 11300 | 7.8719 | 
| 0.1592 | 11400 | 7.828 | 
| 0.1606 | 11500 | 7.8268 | 
| 0.1620 | 11600 | 7.8638 | 
| 0.1634 | 11700 | 7.8466 | 
| 0.1648 | 11800 | 7.8856 | 
| 0.1662 | 11900 | 7.8746 | 
| 0.1676 | 12000 | 7.8293 | 
| 0.1690 | 12100 | 7.8357 | 
| 0.1704 | 12200 | 7.8192 | 
| 0.1718 | 12300 | 7.8348 | 
| 0.1732 | 12400 | 7.8417 | 
| 0.1746 | 12500 | 7.8415 | 
| 0.1760 | 12600 | 7.8095 | 
| 0.1774 | 12700 | 7.8149 | 
| 0.1788 | 12800 | 7.8309 | 
| 0.1802 | 12900 | 7.8356 | 
| 0.1816 | 13000 | 7.8243 | 
| 0.1830 | 13100 | 7.8378 | 
| 0.1844 | 13200 | 7.8265 | 
| 0.1858 | 13300 | 7.8258 | 
| 0.1872 | 13400 | 7.808 | 
| 0.1886 | 13500 | 7.827 | 
| 0.1900 | 13600 | 7.8264 | 
| 0.1914 | 13700 | 7.8158 | 
| 0.1927 | 13800 | 7.8034 | 
| 0.1941 | 13900 | 7.8207 | 
| 0.1955 | 14000 | 7.7986 | 
| 0.1969 | 14100 | 7.8126 | 
| 0.1983 | 14200 | 7.8103 | 
| 0.1997 | 14300 | 7.7929 | 
| 0.2011 | 14400 | 7.8229 | 
| 0.2025 | 14500 | 7.8112 | 
| 0.2039 | 14600 | 7.8117 | 
| 0.2053 | 14700 | 7.8409 | 
| 0.2067 | 14800 | 7.7997 | 
| 0.2081 | 14900 | 7.8059 | 
| 0.2095 | 15000 | 7.7917 | 
| 0.2109 | 15100 | 7.8273 | 
| 0.2123 | 15200 | 7.8068 | 
| 0.2137 | 15300 | 7.8066 | 
| 0.2151 | 15400 | 7.7925 | 
| 0.2165 | 15500 | 7.7894 | 
| 0.2179 | 15600 | 7.7946 | 
| 0.2193 | 15700 | 7.7737 | 
| 0.2207 | 15800 | 7.7471 | 
| 0.2221 | 15900 | 7.7875 | 
| 0.2235 | 16000 | 7.7844 | 
| 0.2249 | 16100 | 7.7909 | 
| 0.2263 | 16200 | 7.7729 | 
| 0.2277 | 16300 | 7.7359 | 
| 0.2291 | 16400 | 7.7713 | 
| 0.2305 | 16500 | 7.7568 | 
| 0.2319 | 16600 | 7.7483 | 
| 0.2333 | 16700 | 7.8248 | 
| 0.2346 | 16800 | 7.76 | 
| 0.2360 | 16900 | 7.7332 | 
| 0.2374 | 17000 | 7.7894 | 
| 0.2388 | 17100 | 7.7706 | 
| 0.2402 | 17200 | 7.7997 | 
| 0.2416 | 17300 | 7.7674 | 
| 0.2430 | 17400 | 7.7531 | 
| 0.2444 | 17500 | 7.7372 | 
| 0.2458 | 17600 | 7.7449 | 
| 0.2472 | 17700 | 7.7369 | 
| 0.2486 | 17800 | 7.7559 | 
| 0.2500 | 17900 | 7.7437 | 
| 0.2514 | 18000 | 7.7738 | 
| 0.2528 | 18100 | 7.731 | 
| 0.2542 | 18200 | 7.7466 | 
| 0.2556 | 18300 | 7.7231 | 
| 0.2570 | 18400 | 7.7509 | 
| 0.2584 | 18500 | 7.712 | 
| 0.2598 | 18600 | 7.7415 | 
| 0.2612 | 18700 | 7.7097 | 
| 0.2626 | 18800 | 7.741 | 
| 0.2640 | 18900 | 7.7323 | 
| 0.2654 | 19000 | 7.7421 | 
| 0.2668 | 19100 | 7.7221 | 
| 0.2682 | 19200 | 7.7138 | 
| 0.2696 | 19300 | 7.7496 | 
| 0.2710 | 19400 | 7.7311 | 
| 0.2724 | 19500 | 7.7119 | 
| 0.2738 | 19600 | 7.6982 | 
| 0.2752 | 19700 | 7.7307 | 
| 0.2766 | 19800 | 7.7392 | 
| 0.2779 | 19900 | 7.7192 | 
| 0.2793 | 20000 | 7.711 | 
| 0.2807 | 20100 | 7.7051 | 
| 0.2821 | 20200 | 7.7276 | 
| 0.2835 | 20300 | 7.7433 | 
| 0.2849 | 20400 | 7.6985 | 
| 0.2863 | 20500 | 7.7243 | 
| 0.2877 | 20600 | 7.7004 | 
| 0.2891 | 20700 | 7.702 | 
| 0.2905 | 20800 | 7.7282 | 
| 0.2919 | 20900 | 7.7184 | 
| 0.2933 | 21000 | 7.7244 | 
| 0.2947 | 21100 | 7.7026 | 
| 0.2961 | 21200 | 7.7052 | 
| 0.2975 | 21300 | 7.7139 | 
| 0.2989 | 21400 | 7.7409 | 
| 0.3003 | 21500 | 7.7089 | 
| 0.3017 | 21600 | 7.7075 | 
| 0.3031 | 21700 | 7.7087 | 
| 0.3045 | 21800 | 7.6938 | 
| 0.3059 | 21900 | 7.7021 | 
| 0.3073 | 22000 | 7.7086 | 
| 0.3087 | 22100 | 7.7108 | 
| 0.3101 | 22200 | 7.7107 | 
| 0.3115 | 22300 | 7.6803 | 
| 0.3129 | 22400 | 7.7361 | 
| 0.3143 | 22500 | 7.7141 | 
| 0.3157 | 22600 | 7.7032 | 
| 0.3171 | 22700 | 7.6982 | 
| 0.3185 | 22800 | 7.704 | 
| 0.3199 | 22900 | 7.7382 | 
| 0.3212 | 23000 | 7.6877 | 
| 0.3226 | 23100 | 7.6841 | 
| 0.3240 | 23200 | 7.6967 | 
| 0.3254 | 23300 | 7.6743 | 
| 0.3268 | 23400 | 7.6883 | 
| 0.3282 | 23500 | 7.6817 | 
| 0.3296 | 23600 | 7.6974 | 
| 0.3310 | 23700 | 7.6739 | 
| 0.3324 | 23800 | 7.6901 | 
| 0.3338 | 23900 | 7.6787 | 
| 0.3352 | 24000 | 7.6588 | 
| 0.3366 | 24100 | 7.6395 | 
| 0.3380 | 24200 | 7.6823 | 
| 0.3394 | 24300 | 7.6869 | 
| 0.3408 | 24400 | 7.6955 | 
| 0.3422 | 24500 | 7.6883 | 
| 0.3436 | 24600 | 7.6559 | 
| 0.3450 | 24700 | 7.6749 | 
| 0.3464 | 24800 | 7.7027 | 
| 0.3478 | 24900 | 7.66 | 
| 0.3492 | 25000 | 7.6944 | 
| 0.3506 | 25100 | 7.6579 | 
| 0.3520 | 25200 | 7.6785 | 
| 0.3534 | 25300 | 7.6256 | 
| 0.3548 | 25400 | 7.6397 | 
| 0.3562 | 25500 | 7.6876 | 
| 0.3576 | 25600 | 7.6048 | 
| 0.3590 | 25700 | 7.6552 | 
| 0.3604 | 25800 | 7.6586 | 
| 0.3618 | 25900 | 7.684 | 
| 0.3631 | 26000 | 7.6663 | 
| 0.3645 | 26100 | 7.6365 | 
| 0.3659 | 26200 | 7.6428 | 
| 0.3673 | 26300 | 7.664 | 
| 0.3687 | 26400 | 7.667 | 
| 0.3701 | 26500 | 7.6688 | 
| 0.3715 | 26600 | 7.6851 | 
| 0.3729 | 26700 | 7.6363 | 
| 0.3743 | 26800 | 7.6653 | 
| 0.3757 | 26900 | 7.6045 | 
| 0.3771 | 27000 | 7.6808 | 
| 0.3785 | 27100 | 7.6702 | 
| 0.3799 | 27200 | 7.6865 | 
| 0.3813 | 27300 | 7.6526 | 
| 0.3827 | 27400 | 7.6366 | 
| 0.3841 | 27500 | 7.6531 | 
| 0.3855 | 27600 | 7.6101 | 
| 0.3869 | 27700 | 7.7053 | 
| 0.3883 | 27800 | 7.6464 | 
| 0.3897 | 27900 | 7.6573 | 
| 0.3911 | 28000 | 7.6346 | 
| 0.3925 | 28100 | 7.6761 | 
| 0.3939 | 28200 | 7.5953 | 
| 0.3953 | 28300 | 7.6597 | 
| 0.3967 | 28400 | 7.7015 | 
| 0.3981 | 28500 | 7.6681 | 
| 0.3995 | 28600 | 7.6132 | 
| 0.4009 | 28700 | 7.6378 | 
| 0.4023 | 28800 | 7.6311 | 
| 0.4037 | 28900 | 7.6349 | 
| 0.4051 | 29000 | 7.6295 | 
| 0.4064 | 29100 | 7.6114 | 
| 0.4078 | 29200 | 7.6839 | 
| 0.4092 | 29300 | 7.5965 | 
| 0.4106 | 29400 | 7.6351 | 
| 0.4120 | 29500 | 7.6114 | 
| 0.4134 | 29600 | 7.6111 | 
| 0.4148 | 29700 | 7.6095 | 
| 0.4162 | 29800 | 7.5959 | 
| 0.4176 | 29900 | 7.6009 | 
| 0.4190 | 30000 | 7.6542 | 
| 0.4204 | 30100 | 7.6446 | 
| 0.4218 | 30200 | 7.6177 | 
| 0.4232 | 30300 | 7.6361 | 
| 0.4246 | 30400 | 7.6426 | 
| 0.4260 | 30500 | 7.6226 | 
| 0.4274 | 30600 | 7.6074 | 
| 0.4288 | 30700 | 7.6257 | 
| 0.4302 | 30800 | 7.6683 | 
| 0.4316 | 30900 | 7.6385 | 
| 0.4330 | 31000 | 7.5898 | 
| 0.4344 | 31100 | 7.6374 | 
| 0.4358 | 31200 | 7.6052 | 
| 0.4372 | 31300 | 7.6044 | 
| 0.4386 | 31400 | 7.6226 | 
| 0.4400 | 31500 | 7.6415 | 
| 0.4414 | 31600 | 7.6226 | 
| 0.4428 | 31700 | 7.6336 | 
| 0.4442 | 31800 | 7.6106 | 
| 0.4456 | 31900 | 7.6771 | 
| 0.4470 | 32000 | 7.6026 | 
| 0.4483 | 32100 | 7.6129 | 
| 0.4497 | 32200 | 7.602 | 
| 0.4511 | 32300 | 7.6007 | 
| 0.4525 | 32400 | 7.6113 | 
| 0.4539 | 32500 | 7.6293 | 
| 0.4553 | 32600 | 7.5768 | 
| 0.4567 | 32700 | 7.6144 | 
| 0.4581 | 32800 | 7.6178 | 
| 0.4595 | 32900 | 7.6418 | 
| 0.4609 | 33000 | 7.5932 | 
| 0.4623 | 33100 | 7.6414 | 
| 0.4637 | 33200 | 7.5972 | 
| 0.4651 | 33300 | 7.6166 | 
| 0.4665 | 33400 | 7.5887 | 
| 0.4679 | 33500 | 7.64 | 
| 0.4693 | 33600 | 7.5756 | 
| 0.4707 | 33700 | 7.6185 | 
| 0.4721 | 33800 | 7.5707 | 
| 0.4735 | 33900 | 7.617 | 
| 0.4749 | 34000 | 7.6021 | 
| 0.4763 | 34100 | 7.5814 | 
| 0.4777 | 34200 | 7.5848 | 
| 0.4791 | 34300 | 7.6053 | 
| 0.4805 | 34400 | 7.6331 | 
| 0.4819 | 34500 | 7.5848 | 
| 0.4833 | 34600 | 7.5706 | 
| 0.4847 | 34700 | 7.5536 | 
| 0.4861 | 34800 | 7.5782 | 
| 0.4875 | 34900 | 7.6322 | 
| 0.4889 | 35000 | 7.6031 | 
| 0.4903 | 35100 | 7.5994 | 
| 0.4916 | 35200 | 7.5684 | 
| 0.4930 | 35300 | 7.5978 | 
| 0.4944 | 35400 | 7.5918 | 
| 0.4958 | 35500 | 7.575 | 
| 0.4972 | 35600 | 7.5607 | 
| 0.4986 | 35700 | 7.5845 | 
| 0.5000 | 35800 | 7.5853 | 
| 0.5014 | 35900 | 7.571 | 
| 0.5028 | 36000 | 7.6007 | 
| 0.5042 | 36100 | 7.5946 | 
| 0.5056 | 36200 | 7.5754 | 
| 0.5070 | 36300 | 7.5845 | 
| 0.5084 | 36400 | 7.5302 | 
| 0.5098 | 36500 | 7.6311 | 
| 0.5112 | 36600 | 7.5893 | 
| 0.5126 | 36700 | 7.6081 | 
| 0.5140 | 36800 | 7.586 | 
| 0.5154 | 36900 | 7.6083 | 
| 0.5168 | 37000 | 7.5997 | 
| 0.5182 | 37100 | 7.5887 | 
| 0.5196 | 37200 | 7.5844 | 
| 0.5210 | 37300 | 7.5787 | 
| 0.5224 | 37400 | 7.5669 | 
| 0.5238 | 37500 | 7.5913 | 
| 0.5252 | 37600 | 7.5495 | 
| 0.5266 | 37700 | 7.6103 | 
| 0.5280 | 37800 | 7.5815 | 
| 0.5294 | 37900 | 7.6002 | 
| 0.5308 | 38000 | 7.5576 | 
| 0.5322 | 38100 | 7.5679 | 
| 0.5335 | 38200 | 7.5552 | 
| 0.5349 | 38300 | 7.548 | 
| 0.5363 | 38400 | 7.6028 | 
| 0.5377 | 38500 | 7.5662 | 
| 0.5391 | 38600 | 7.6073 | 
| 0.5405 | 38700 | 7.5565 | 
| 0.5419 | 38800 | 7.5448 | 
| 0.5433 | 38900 | 7.5782 | 
| 0.5447 | 39000 | 7.5911 | 
| 0.5461 | 39100 | 7.5661 | 
| 0.5475 | 39200 | 7.5355 | 
| 0.5489 | 39300 | 7.5251 | 
| 0.5503 | 39400 | 7.5508 | 
| 0.5517 | 39500 | 7.5893 | 
| 0.5531 | 39600 | 7.5748 | 
| 0.5545 | 39700 | 7.5789 | 
| 0.5559 | 39800 | 7.5622 | 
| 0.5573 | 39900 | 7.5162 | 
| 0.5587 | 40000 | 7.5782 | 
| 0.5601 | 40100 | 7.5872 | 
| 0.5615 | 40200 | 7.5919 | 
| 0.5629 | 40300 | 7.5753 | 
| 0.5643 | 40400 | 7.5727 | 
| 0.5657 | 40500 | 7.5961 | 
| 0.5671 | 40600 | 7.5512 | 
| 0.5685 | 40700 | 7.5434 | 
| 0.5699 | 40800 | 7.518 | 
| 0.5713 | 40900 | 7.5662 | 
| 0.5727 | 41000 | 7.5496 | 
| 0.5741 | 41100 | 7.5421 | 
| 0.5755 | 41200 | 7.575 | 
| 0.5768 | 41300 | 7.5667 | 
| 0.5782 | 41400 | 7.5781 | 
| 0.5796 | 41500 | 7.5606 | 
| 0.5810 | 41600 | 7.5699 | 
| 0.5824 | 41700 | 7.543 | 
| 0.5838 | 41800 | 7.589 | 
| 0.5852 | 41900 | 7.5587 | 
| 0.5866 | 42000 | 7.5488 | 
| 0.5880 | 42100 | 7.5919 | 
| 0.5894 | 42200 | 7.5495 | 
| 0.5908 | 42300 | 7.5454 | 
| 0.5922 | 42400 | 7.5522 | 
| 0.5936 | 42500 | 7.5552 | 
| 0.5950 | 42600 | 7.5715 | 
| 0.5964 | 42700 | 7.5471 | 
| 0.5978 | 42800 | 7.5359 | 
| 0.5992 | 42900 | 7.5817 | 
| 0.6006 | 43000 | 7.5375 | 
| 0.6020 | 43100 | 7.5538 | 
| 0.6034 | 43200 | 7.574 | 
| 0.6048 | 43300 | 7.5564 | 
| 0.6062 | 43400 | 7.5597 | 
| 0.6076 | 43500 | 7.5498 | 
| 0.6090 | 43600 | 7.5369 | 
| 0.6104 | 43700 | 7.562 | 
| 0.6118 | 43800 | 7.5521 | 
| 0.6132 | 43900 | 7.5482 | 
| 0.6146 | 44000 | 7.5298 | 
| 0.6160 | 44100 | 7.5174 | 
| 0.6174 | 44200 | 7.5421 | 
| 0.6187 | 44300 | 7.563 | 
| 0.6201 | 44400 | 7.5165 | 
| 0.6215 | 44500 | 7.5284 | 
| 0.6229 | 44600 | 7.5089 | 
| 0.6243 | 44700 | 7.5352 | 
| 0.6257 | 44800 | 7.5407 | 
| 0.6271 | 44900 | 7.5336 | 
| 0.6285 | 45000 | 7.5842 | 
| 0.6299 | 45100 | 7.5239 | 
| 0.6313 | 45200 | 7.5428 | 
| 0.6327 | 45300 | 7.526 | 
| 0.6341 | 45400 | 7.5117 | 
| 0.6355 | 45500 | 7.5288 | 
| 0.6369 | 45600 | 7.515 | 
| 0.6383 | 45700 | 7.5327 | 
| 0.6397 | 45800 | 7.5148 | 
| 0.6411 | 45900 | 7.5304 | 
| 0.6425 | 46000 | 7.5363 | 
| 0.6439 | 46100 | 7.5321 | 
| 0.6453 | 46200 | 7.522 | 
| 0.6467 | 46300 | 7.526 | 
| 0.6481 | 46400 | 7.4987 | 
| 0.6495 | 46500 | 7.4985 | 
| 0.6509 | 46600 | 7.5122 | 
| 0.6523 | 46700 | 7.4879 | 
| 0.6537 | 46800 | 7.5162 | 
| 0.6551 | 46900 | 7.5705 | 
| 0.6565 | 47000 | 7.5324 | 
| 0.6579 | 47100 | 7.5239 | 
| 0.6593 | 47200 | 7.5208 | 
| 0.6607 | 47300 | 7.5647 | 
| 0.6620 | 47400 | 7.527 | 
| 0.6634 | 47500 | 7.5208 | 
| 0.6648 | 47600 | 7.5256 | 
| 0.6662 | 47700 | 7.5009 | 
| 0.6676 | 47800 | 7.5164 | 
| 0.6690 | 47900 | 7.5387 | 
| 0.6704 | 48000 | 7.5217 | 
| 0.6718 | 48100 | 7.5388 | 
| 0.6732 | 48200 | 7.5101 | 
| 0.6746 | 48300 | 7.5101 | 
| 0.6760 | 48400 | 7.5359 | 
| 0.6774 | 48500 | 7.5372 | 
| 0.6788 | 48600 | 7.555 | 
| 0.6802 | 48700 | 7.4809 | 
| 0.6816 | 48800 | 7.5207 | 
| 0.6830 | 48900 | 7.4817 | 
| 0.6844 | 49000 | 7.4865 | 
| 0.6858 | 49100 | 7.5301 | 
| 0.6872 | 49200 | 7.5143 | 
| 0.6886 | 49300 | 7.4739 | 
| 0.6900 | 49400 | 7.515 | 
| 0.6914 | 49500 | 7.5255 | 
| 0.6928 | 49600 | 7.5368 | 
| 0.6942 | 49700 | 7.4903 | 
| 0.6956 | 49800 | 7.5401 | 
| 0.6970 | 49900 | 7.5503 | 
| 0.6984 | 50000 | 7.5551 | 
| 0.6998 | 50100 | 7.4994 | 
| 0.7012 | 50200 | 7.4759 | 
| 0.7026 | 50300 | 7.4932 | 
| 0.7039 | 50400 | 7.534 | 
| 0.7053 | 50500 | 7.5128 | 
| 0.7067 | 50600 | 7.4932 | 
| 0.7081 | 50700 | 7.4578 | 
| 0.7095 | 50800 | 7.4798 | 
| 0.7109 | 50900 | 7.5085 | 
| 0.7123 | 51000 | 7.4953 | 
| 0.7137 | 51100 | 7.4764 | 
| 0.7151 | 51200 | 7.5076 | 
| 0.7165 | 51300 | 7.5167 | 
| 0.7179 | 51400 | 7.5326 | 
| 0.7193 | 51500 | 7.5192 | 
| 0.7207 | 51600 | 7.548 | 
| 0.7221 | 51700 | 7.506 | 
| 0.7235 | 51800 | 7.5137 | 
| 0.7249 | 51900 | 7.5348 | 
| 0.7263 | 52000 | 7.4981 | 
| 0.7277 | 52100 | 7.4936 | 
| 0.7291 | 52200 | 7.4745 | 
| 0.7305 | 52300 | 7.4885 | 
| 0.7319 | 52400 | 7.522 | 
| 0.7333 | 52500 | 7.5265 | 
| 0.7347 | 52600 | 7.4989 | 
| 0.7361 | 52700 | 7.5173 | 
| 0.7375 | 52800 | 7.4638 | 
| 0.7389 | 52900 | 7.4649 | 
| 0.7403 | 53000 | 7.5227 | 
| 0.7417 | 53100 | 7.4796 | 
| 0.7431 | 53200 | 7.5207 | 
| 0.7445 | 53300 | 7.4882 | 
| 0.7459 | 53400 | 7.5516 | 
| 0.7472 | 53500 | 7.5309 | 
| 0.7486 | 53600 | 7.5256 | 
| 0.7500 | 53700 | 7.4669 | 
| 0.7514 | 53800 | 7.5096 | 
| 0.7528 | 53900 | 7.501 | 
| 0.7542 | 54000 | 7.4802 | 
| 0.7556 | 54100 | 7.5025 | 
| 0.7570 | 54200 | 7.4766 | 
| 0.7584 | 54300 | 7.4708 | 
| 0.7598 | 54400 | 7.4649 | 
| 0.7612 | 54500 | 7.4744 | 
| 0.7626 | 54600 | 7.5057 | 
| 0.7640 | 54700 | 7.5358 | 
| 0.7654 | 54800 | 7.5062 | 
| 0.7668 | 54900 | 7.4968 | 
| 0.7682 | 55000 | 7.4995 | 
| 0.7696 | 55100 | 7.4972 | 
| 0.7710 | 55200 | 7.4894 | 
| 0.7724 | 55300 | 7.5039 | 
| 0.7738 | 55400 | 7.4545 | 
| 0.7752 | 55500 | 7.4652 | 
| 0.7766 | 55600 | 7.5129 | 
| 0.7780 | 55700 | 7.4947 | 
| 0.7794 | 55800 | 7.4579 | 
| 0.7808 | 55900 | 7.5092 | 
| 0.7822 | 56000 | 7.483 | 
| 0.7836 | 56100 | 7.5105 | 
| 0.7850 | 56200 | 7.4952 | 
| 0.7864 | 56300 | 7.5019 | 
| 0.7878 | 56400 | 7.4451 | 
| 0.7892 | 56500 | 7.4659 | 
| 0.7905 | 56600 | 7.4908 | 
| 0.7919 | 56700 | 7.4606 | 
| 0.7933 | 56800 | 7.5125 | 
| 0.7947 | 56900 | 7.4814 | 
| 0.7961 | 57000 | 7.4796 | 
| 0.7975 | 57100 | 7.4848 | 
| 0.7989 | 57200 | 7.504 | 
| 0.8003 | 57300 | 7.5136 | 
| 0.8017 | 57400 | 7.5122 | 
| 0.8031 | 57500 | 7.4649 | 
| 0.8045 | 57600 | 7.454 | 
| 0.8059 | 57700 | 7.453 | 
| 0.8073 | 57800 | 7.4835 | 
| 0.8087 | 57900 | 7.5299 | 
| 0.8101 | 58000 | 7.513 | 
| 0.8115 | 58100 | 7.4369 | 
| 0.8129 | 58200 | 7.5271 | 
| 0.8143 | 58300 | 7.4935 | 
| 0.8157 | 58400 | 7.476 | 
| 0.8171 | 58500 | 7.4865 | 
| 0.8185 | 58600 | 7.519 | 
| 0.8199 | 58700 | 7.4615 | 
| 0.8213 | 58800 | 7.4702 | 
| 0.8227 | 58900 | 7.4628 | 
| 0.8241 | 59000 | 7.5267 | 
| 0.8255 | 59100 | 7.489 | 
| 0.8269 | 59200 | 7.4826 | 
| 0.8283 | 59300 | 7.4526 | 
| 0.8297 | 59400 | 7.4631 | 
| 0.8311 | 59500 | 7.4789 | 
| 0.8324 | 59600 | 7.5113 | 
| 0.8338 | 59700 | 7.4752 | 
| 0.8352 | 59800 | 7.5079 | 
| 0.8366 | 59900 | 7.4918 | 
| 0.8380 | 60000 | 7.4491 | 
| 0.8394 | 60100 | 7.501 | 
| 0.8408 | 60200 | 7.4831 | 
| 0.8422 | 60300 | 7.4731 | 
| 0.8436 | 60400 | 7.4578 | 
| 0.8450 | 60500 | 7.4536 | 
| 0.8464 | 60600 | 7.4684 | 
| 0.8478 | 60700 | 7.4523 | 
| 0.8492 | 60800 | 7.4843 | 
| 0.8506 | 60900 | 7.4367 | 
| 0.8520 | 61000 | 7.5007 | 
| 0.8534 | 61100 | 7.5152 | 
| 0.8548 | 61200 | 7.5043 | 
| 0.8562 | 61300 | 7.4663 | 
| 0.8576 | 61400 | 7.4824 | 
| 0.8590 | 61500 | 7.4828 | 
| 0.8604 | 61600 | 7.5054 | 
| 0.8618 | 61700 | 7.5155 | 
| 0.8632 | 61800 | 7.5139 | 
| 0.8646 | 61900 | 7.4603 | 
| 0.8660 | 62000 | 7.4706 | 
| 0.8674 | 62100 | 7.4581 | 
| 0.8688 | 62200 | 7.4556 | 
| 0.8702 | 62300 | 7.4949 | 
| 0.8716 | 62400 | 7.4812 | 
| 0.8730 | 62500 | 7.4586 | 
| 0.8744 | 62600 | 7.459 | 
| 0.8757 | 62700 | 7.4496 | 
| 0.8771 | 62800 | 7.4393 | 
| 0.8785 | 62900 | 7.4564 | 
| 0.8799 | 63000 | 7.4627 | 
| 0.8813 | 63100 | 7.4513 | 
| 0.8827 | 63200 | 7.4596 | 
| 0.8841 | 63300 | 7.4805 | 
| 0.8855 | 63400 | 7.4279 | 
| 0.8869 | 63500 | 7.4887 | 
| 0.8883 | 63600 | 7.4519 | 
| 0.8897 | 63700 | 7.4566 | 
| 0.8911 | 63800 | 7.4547 | 
| 0.8925 | 63900 | 7.4422 | 
| 0.8939 | 64000 | 7.4777 | 
| 0.8953 | 64100 | 7.4437 | 
| 0.8967 | 64200 | 7.502 | 
| 0.8981 | 64300 | 7.4349 | 
| 0.8995 | 64400 | 7.4929 | 
| 0.9009 | 64500 | 7.4436 | 
| 0.9023 | 64600 | 7.4263 | 
| 0.9037 | 64700 | 7.5016 | 
| 0.9051 | 64800 | 7.4396 | 
| 0.9065 | 64900 | 7.4313 | 
| 0.9079 | 65000 | 7.4591 | 
| 0.9093 | 65100 | 7.4261 | 
| 0.9107 | 65200 | 7.4038 | 
| 0.9121 | 65300 | 7.4548 | 
| 0.9135 | 65400 | 7.4305 | 
| 0.9149 | 65500 | 7.4705 | 
| 0.9163 | 65600 | 7.4293 | 
| 0.9176 | 65700 | 7.447 | 
| 0.9190 | 65800 | 7.4771 | 
| 0.9204 | 65900 | 7.4565 | 
| 0.9218 | 66000 | 7.4388 | 
| 0.9232 | 66100 | 7.4339 | 
| 0.9246 | 66200 | 7.4576 | 
| 0.9260 | 66300 | 7.4399 | 
| 0.9274 | 66400 | 7.4484 | 
| 0.9288 | 66500 | 7.4819 | 
| 0.9302 | 66600 | 7.4511 | 
| 0.9316 | 66700 | 7.4931 | 
| 0.9330 | 66800 | 7.3958 | 
| 0.9344 | 66900 | 7.4145 | 
| 0.9358 | 67000 | 7.4576 | 
| 0.9372 | 67100 | 7.4762 | 
| 0.9386 | 67200 | 7.4915 | 
| 0.9400 | 67300 | 7.4482 | 
| 0.9414 | 67400 | 7.405 | 
| 0.9428 | 67500 | 7.4455 | 
| 0.9442 | 67600 | 7.4361 | 
| 0.9456 | 67700 | 7.4063 | 
| 0.9470 | 67800 | 7.471 | 
| 0.9484 | 67900 | 7.4358 | 
| 0.9498 | 68000 | 7.4549 | 
| 0.9512 | 68100 | 7.4377 | 
| 0.9526 | 68200 | 7.4748 | 
| 0.9540 | 68300 | 7.4464 | 
| 0.9554 | 68400 | 7.4521 | 
| 0.9568 | 68500 | 7.4831 | 
| 0.9582 | 68600 | 7.477 | 
| 0.9596 | 68700 | 7.444 | 
| 0.9609 | 68800 | 7.4955 | 
| 0.9623 | 68900 | 7.4182 | 
| 0.9637 | 69000 | 7.4425 | 
| 0.9651 | 69100 | 7.4489 | 
| 0.9665 | 69200 | 7.4088 | 
| 0.9679 | 69300 | 7.396 | 
| 0.9693 | 69400 | 7.4612 | 
| 0.9707 | 69500 | 7.3897 | 
| 0.9721 | 69600 | 7.42 | 
| 0.9735 | 69700 | 7.4507 | 
| 0.9749 | 69800 | 7.4757 | 
| 0.9763 | 69900 | 7.4319 | 
| 0.9777 | 70000 | 7.4576 | 
| 0.9791 | 70100 | 7.4226 | 
| 0.9805 | 70200 | 7.4274 | 
| 0.9819 | 70300 | 7.4741 | 
| 0.9833 | 70400 | 7.4664 | 
| 0.9847 | 70500 | 7.4765 | 
| 0.9861 | 70600 | 7.4254 | 
| 0.9875 | 70700 | 7.4066 | 
| 0.9889 | 70800 | 7.4404 | 
| 0.9903 | 70900 | 7.4147 | 
| 0.9917 | 71000 | 7.4029 | 
| 0.9931 | 71100 | 7.4446 | 
| 0.9945 | 71200 | 7.3877 | 
| 0.9959 | 71300 | 7.4271 | 
| 0.9973 | 71400 | 7.4438 | 
| 0.9987 | 71500 | 7.4293 | 
| 1.0001 | 71600 | 7.39 | 
| 1.0015 | 71700 | 7.386 | 
| 1.0028 | 71800 | 7.4045 | 
| 1.0042 | 71900 | 7.4088 | 
| 1.0056 | 72000 | 7.4289 | 
| 1.0070 | 72100 | 7.3862 | 
| 1.0084 | 72200 | 7.4724 | 
| 1.0098 | 72300 | 7.4537 | 
| 1.0112 | 72400 | 7.3952 | 
| 1.0126 | 72500 | 7.4542 | 
| 1.0140 | 72600 | 7.409 | 
| 1.0154 | 72700 | 7.4636 | 
| 1.0168 | 72800 | 7.3787 | 
| 1.0182 | 72900 | 7.4571 | 
| 1.0196 | 73000 | 7.4341 | 
| 1.0210 | 73100 | 7.4312 | 
| 1.0224 | 73200 | 7.455 | 
| 1.0238 | 73300 | 7.4504 | 
| 1.0252 | 73400 | 7.4112 | 
| 1.0266 | 73500 | 7.3949 | 
| 1.0280 | 73600 | 7.4156 | 
| 1.0294 | 73700 | 7.3914 | 
| 1.0308 | 73800 | 7.4168 | 
| 1.0322 | 73900 | 7.4476 | 
| 1.0336 | 74000 | 7.4095 | 
| 1.0350 | 74100 | 7.3721 | 
| 1.0364 | 74200 | 7.4356 | 
| 1.0378 | 74300 | 7.3945 | 
| 1.0392 | 74400 | 7.3911 | 
| 1.0406 | 74500 | 7.3959 | 
| 1.0420 | 74600 | 7.4217 | 
| 1.0434 | 74700 | 7.4075 | 
| 1.0448 | 74800 | 7.4174 | 
| 1.0461 | 74900 | 7.42 | 
| 1.0475 | 75000 | 7.4214 | 
| 1.0489 | 75100 | 7.3647 | 
| 1.0503 | 75200 | 7.3671 | 
| 1.0517 | 75300 | 7.4565 | 
| 1.0531 | 75400 | 7.404 | 
| 1.0545 | 75500 | 7.4019 | 
| 1.0559 | 75600 | 7.3844 | 
| 1.0573 | 75700 | 7.4298 | 
| 1.0587 | 75800 | 7.4311 | 
| 1.0601 | 75900 | 7.4047 | 
| 1.0615 | 76000 | 7.4078 | 
| 1.0629 | 76100 | 7.4742 | 
| 1.0643 | 76200 | 7.4481 | 
| 1.0657 | 76300 | 7.3559 | 
| 1.0671 | 76400 | 7.3878 | 
| 1.0685 | 76500 | 7.3945 | 
| 1.0699 | 76600 | 7.4159 | 
| 1.0713 | 76700 | 7.4341 | 
| 1.0727 | 76800 | 7.4221 | 
| 1.0741 | 76900 | 7.4849 | 
| 1.0755 | 77000 | 7.4075 | 
| 1.0769 | 77100 | 7.394 | 
| 1.0783 | 77200 | 7.3852 | 
| 1.0797 | 77300 | 7.3751 | 
| 1.0811 | 77400 | 7.4226 | 
| 1.0825 | 77500 | 7.38 | 
| 1.0839 | 77600 | 7.4084 | 
| 1.0853 | 77700 | 7.3755 | 
| 1.0867 | 77800 | 7.3879 | 
| 1.0880 | 77900 | 7.375 | 
| 1.0894 | 78000 | 7.3899 | 
| 1.0908 | 78100 | 7.4605 | 
| 1.0922 | 78200 | 7.4317 | 
| 1.0936 | 78300 | 7.413 | 
| 1.0950 | 78400 | 7.4031 | 
| 1.0964 | 78500 | 7.4094 | 
| 1.0978 | 78600 | 7.4168 | 
| 1.0992 | 78700 | 7.3952 | 
| 1.1006 | 78800 | 7.4401 | 
| 1.1020 | 78900 | 7.3392 | 
| 1.1034 | 79000 | 7.4333 | 
| 1.1048 | 79100 | 7.4113 | 
| 1.1062 | 79200 | 7.3885 | 
| 1.1076 | 79300 | 7.4112 | 
| 1.1090 | 79400 | 7.4182 | 
| 1.1104 | 79500 | 7.4378 | 
| 1.1118 | 79600 | 7.4014 | 
| 1.1132 | 79700 | 7.3949 | 
| 1.1146 | 79800 | 7.3834 | 
| 1.1160 | 79900 | 7.3816 | 
| 1.1174 | 80000 | 7.3646 | 
| 1.1188 | 80100 | 7.3784 | 
| 1.1202 | 80200 | 7.3724 | 
| 1.1216 | 80300 | 7.3906 | 
| 1.1230 | 80400 | 7.4309 | 
| 1.1244 | 80500 | 7.4435 | 
| 1.1258 | 80600 | 7.4319 | 
| 1.1272 | 80700 | 7.3935 | 
| 1.1286 | 80800 | 7.3904 | 
| 1.1300 | 80900 | 7.4068 | 
| 1.1313 | 81000 | 7.4046 | 
| 1.1327 | 81100 | 7.3928 | 
| 1.1341 | 81200 | 7.4125 | 
| 1.1355 | 81300 | 7.399 | 
| 1.1369 | 81400 | 7.3605 | 
| 1.1383 | 81500 | 7.4077 | 
| 1.1397 | 81600 | 7.4355 | 
| 1.1411 | 81700 | 7.41 | 
| 1.1425 | 81800 | 7.3839 | 
| 1.1439 | 81900 | 7.3621 | 
| 1.1453 | 82000 | 7.3875 | 
| 1.1467 | 82100 | 7.4002 | 
| 1.1481 | 82200 | 7.3748 | 
| 1.1495 | 82300 | 7.4021 | 
| 1.1509 | 82400 | 7.4159 | 
| 1.1523 | 82500 | 7.398 | 
| 1.1537 | 82600 | 7.4328 | 
| 1.1551 | 82700 | 7.416 | 
| 1.1565 | 82800 | 7.4136 | 
| 1.1579 | 82900 | 7.417 | 
| 1.1593 | 83000 | 7.3902 | 
| 1.1607 | 83100 | 7.4206 | 
| 1.1621 | 83200 | 7.4269 | 
| 1.1635 | 83300 | 7.3838 | 
| 1.1649 | 83400 | 7.3465 | 
| 1.1663 | 83500 | 7.3732 | 
| 1.1677 | 83600 | 7.3781 | 
| 1.1691 | 83700 | 7.4024 | 
| 1.1705 | 83800 | 7.4153 | 
| 1.1719 | 83900 | 7.3828 | 
| 1.1732 | 84000 | 7.3904 | 
| 1.1746 | 84100 | 7.3515 | 
| 1.1760 | 84200 | 7.3461 | 
| 1.1774 | 84300 | 7.399 | 
| 1.1788 | 84400 | 7.3873 | 
| 1.1802 | 84500 | 7.3708 | 
| 1.1816 | 84600 | 7.391 | 
| 1.1830 | 84700 | 7.3806 | 
| 1.1844 | 84800 | 7.451 | 
| 1.1858 | 84900 | 7.4261 | 
| 1.1872 | 85000 | 7.41 | 
| 1.1886 | 85100 | 7.3995 | 
| 1.1900 | 85200 | 7.367 | 
| 1.1914 | 85300 | 7.4446 | 
| 1.1928 | 85400 | 7.3949 | 
| 1.1942 | 85500 | 7.3417 | 
| 1.1956 | 85600 | 7.3965 | 
| 1.1970 | 85700 | 7.3651 | 
| 1.1984 | 85800 | 7.4063 | 
| 1.1998 | 85900 | 7.4011 | 
| 1.2012 | 86000 | 7.3924 | 
| 1.2026 | 86100 | 7.3655 | 
| 1.2040 | 86200 | 7.3998 | 
| 1.2054 | 86300 | 7.3935 | 
| 1.2068 | 86400 | 7.4119 | 
| 1.2082 | 86500 | 7.4146 | 
| 1.2096 | 86600 | 7.3772 | 
| 1.2110 | 86700 | 7.4039 | 
| 1.2124 | 86800 | 7.3705 | 
| 1.2138 | 86900 | 7.3799 | 
| 1.2152 | 87000 | 7.3924 | 
| 1.2165 | 87100 | 7.3793 | 
| 1.2179 | 87200 | 7.3873 | 
| 1.2193 | 87300 | 7.4083 | 
| 1.2207 | 87400 | 7.3512 | 
| 1.2221 | 87500 | 7.3968 | 
| 1.2235 | 87600 | 7.3709 | 
| 1.2249 | 87700 | 7.4605 | 
| 1.2263 | 87800 | 7.4164 | 
| 1.2277 | 87900 | 7.3767 | 
| 1.2291 | 88000 | 7.3862 | 
| 1.2305 | 88100 | 7.3939 | 
| 1.2319 | 88200 | 7.4537 | 
| 1.2333 | 88300 | 7.3728 | 
| 1.2347 | 88400 | 7.3853 | 
| 1.2361 | 88500 | 7.3196 | 
| 1.2375 | 88600 | 7.3334 | 
| 1.2389 | 88700 | 7.4594 | 
| 1.2403 | 88800 | 7.4016 | 
| 1.2417 | 88900 | 7.3674 | 
| 1.2431 | 89000 | 7.4007 | 
| 1.2445 | 89100 | 7.3521 | 
| 1.2459 | 89200 | 7.3883 | 
| 1.2473 | 89300 | 7.4061 | 
| 1.2487 | 89400 | 7.3284 | 
| 1.2501 | 89500 | 7.4131 | 
| 1.2515 | 89600 | 7.4153 | 
| 1.2529 | 89700 | 7.4159 | 
| 1.2543 | 89800 | 7.3622 | 
| 1.2557 | 89900 | 7.3334 | 
| 1.2571 | 90000 | 7.3869 | 
| 1.2585 | 90100 | 7.3759 | 
| 1.2598 | 90200 | 7.3799 | 
| 1.2612 | 90300 | 7.433 | 
| 1.2626 | 90400 | 7.3396 | 
| 1.2640 | 90500 | 7.3765 | 
| 1.2654 | 90600 | 7.4136 | 
| 1.2668 | 90700 | 7.3832 | 
| 1.2682 | 90800 | 7.4149 | 
| 1.2696 | 90900 | 7.4054 | 
| 1.2710 | 91000 | 7.371 | 
| 1.2724 | 91100 | 7.3702 | 
| 1.2738 | 91200 | 7.388 | 
| 1.2752 | 91300 | 7.3775 | 
| 1.2766 | 91400 | 7.3839 | 
| 1.2780 | 91500 | 7.3636 | 
| 1.2794 | 91600 | 7.418 | 
| 1.2808 | 91700 | 7.3682 | 
| 1.2822 | 91800 | 7.3988 | 
| 1.2836 | 91900 | 7.4208 | 
| 1.2850 | 92000 | 7.383 | 
| 1.2864 | 92100 | 7.4278 | 
| 1.2878 | 92200 | 7.3628 | 
| 1.2892 | 92300 | 7.3842 | 
| 1.2906 | 92400 | 7.3431 | 
| 1.2920 | 92500 | 7.3436 | 
| 1.2934 | 92600 | 7.376 | 
| 1.2948 | 92700 | 7.3636 | 
| 1.2962 | 92800 | 7.3848 | 
| 1.2976 | 92900 | 7.3795 | 
| 1.2990 | 93000 | 7.3964 | 
| 1.3004 | 93100 | 7.3881 | 
| 1.3017 | 93200 | 7.4067 | 
| 1.3031 | 93300 | 7.3716 | 
| 1.3045 | 93400 | 7.4296 | 
| 1.3059 | 93500 | 7.3807 | 
| 1.3073 | 93600 | 7.4189 | 
| 1.3087 | 93700 | 7.3814 | 
| 1.3101 | 93800 | 7.4041 | 
| 1.3115 | 93900 | 7.3512 | 
| 1.3129 | 94000 | 7.3569 | 
| 1.3143 | 94100 | 7.3983 | 
| 1.3157 | 94200 | 7.4096 | 
| 1.3171 | 94300 | 7.3406 | 
| 1.3185 | 94400 | 7.3365 | 
| 1.3199 | 94500 | 7.3864 | 
| 1.3213 | 94600 | 7.299 | 
| 1.3227 | 94700 | 7.4536 | 
| 1.3241 | 94800 | 7.3449 | 
| 1.3255 | 94900 | 7.341 | 
| 1.3269 | 95000 | 7.397 | 
| 1.3283 | 95100 | 7.3709 | 
| 1.3297 | 95200 | 7.3635 | 
| 1.3311 | 95300 | 7.375 | 
| 1.3325 | 95400 | 7.3798 | 
| 1.3339 | 95500 | 7.3722 | 
| 1.3353 | 95600 | 7.374 | 
| 1.3367 | 95700 | 7.3381 | 
| 1.3381 | 95800 | 7.4135 | 
| 1.3395 | 95900 | 7.3561 | 
| 1.3409 | 96000 | 7.3843 | 
| 1.3423 | 96100 | 7.387 | 
| 1.3437 | 96200 | 7.3126 | 
| 1.3450 | 96300 | 7.3868 | 
| 1.3464 | 96400 | 7.4043 | 
| 1.3478 | 96500 | 7.3999 | 
| 1.3492 | 96600 | 7.3701 | 
| 1.3506 | 96700 | 7.3605 | 
| 1.3520 | 96800 | 7.3592 | 
| 1.3534 | 96900 | 7.392 | 
| 1.3548 | 97000 | 7.3975 | 
| 1.3562 | 97100 | 7.3544 | 
| 1.3576 | 97200 | 7.3849 | 
| 1.3590 | 97300 | 7.3532 | 
| 1.3604 | 97400 | 7.4159 | 
| 1.3618 | 97500 | 7.3468 | 
| 1.3632 | 97600 | 7.3625 | 
| 1.3646 | 97700 | 7.4235 | 
| 1.3660 | 97800 | 7.3785 | 
| 1.3674 | 97900 | 7.3577 | 
| 1.3688 | 98000 | 7.3659 | 
| 1.3702 | 98100 | 7.428 | 
| 1.3716 | 98200 | 7.3648 | 
| 1.3730 | 98300 | 7.371 | 
| 1.3744 | 98400 | 7.3481 | 
| 1.3758 | 98500 | 7.3622 | 
| 1.3772 | 98600 | 7.3946 | 
| 1.3786 | 98700 | 7.3902 | 
| 1.3800 | 98800 | 7.4024 | 
| 1.3814 | 98900 | 7.3414 | 
| 1.3828 | 99000 | 7.32 | 
| 1.3842 | 99100 | 7.3545 | 
| 1.3856 | 99200 | 7.3425 | 
| 1.3869 | 99300 | 7.3701 | 
| 1.3883 | 99400 | 7.3459 | 
| 1.3897 | 99500 | 7.3837 | 
| 1.3911 | 99600 | 7.3928 | 
| 1.3925 | 99700 | 7.3882 | 
| 1.3939 | 99800 | 7.3833 | 
| 1.3953 | 99900 | 7.3217 | 
| 1.3967 | 100000 | 7.3858 | 
| 1.3981 | 100100 | 7.3856 | 
| 1.3995 | 100200 | 7.3692 | 
| 1.4009 | 100300 | 7.3858 | 
| 1.4023 | 100400 | 7.387 | 
| 1.4037 | 100500 | 7.3794 | 
| 1.4051 | 100600 | 7.3653 | 
| 1.4065 | 100700 | 7.3718 | 
| 1.4079 | 100800 | 7.3826 | 
| 1.4093 | 100900 | 7.3233 | 
| 1.4107 | 101000 | 7.3859 | 
| 1.4121 | 101100 | 7.3866 | 
| 1.4135 | 101200 | 7.3367 | 
| 1.4149 | 101300 | 7.3274 | 
| 1.4163 | 101400 | 7.3774 | 
| 1.4177 | 101500 | 7.3804 | 
| 1.4191 | 101600 | 7.3555 | 
| 1.4205 | 101700 | 7.3781 | 
| 1.4219 | 101800 | 7.3523 | 
| 1.4233 | 101900 | 7.3183 | 
| 1.4247 | 102000 | 7.3597 | 
| 1.4261 | 102100 | 7.431 | 
| 1.4275 | 102200 | 7.3519 | 
| 1.4289 | 102300 | 7.3591 | 
| 1.4302 | 102400 | 7.3533 | 
| 1.4316 | 102500 | 7.3955 | 
| 1.4330 | 102600 | 7.3829 | 
| 1.4344 | 102700 | 7.3542 | 
| 1.4358 | 102800 | 7.3404 | 
| 1.4372 | 102900 | 7.3746 | 
| 1.4386 | 103000 | 7.3924 | 
| 1.4400 | 103100 | 7.3267 | 
| 1.4414 | 103200 | 7.3522 | 
| 1.4428 | 103300 | 7.3496 | 
| 1.4442 | 103400 | 7.3668 | 
| 1.4456 | 103500 | 7.3394 | 
| 1.4470 | 103600 | 7.3758 | 
| 1.4484 | 103700 | 7.3537 | 
| 1.4498 | 103800 | 7.3593 | 
| 1.4512 | 103900 | 7.3289 | 
| 1.4526 | 104000 | 7.3565 | 
| 1.4540 | 104100 | 7.3765 | 
| 1.4554 | 104200 | 7.3392 | 
| 1.4568 | 104300 | 7.3714 | 
| 1.4582 | 104400 | 7.3845 | 
| 1.4596 | 104500 | 7.3639 | 
| 1.4610 | 104600 | 7.3707 | 
| 1.4624 | 104700 | 7.3687 | 
| 1.4638 | 104800 | 7.3566 | 
| 1.4652 | 104900 | 7.4302 | 
| 1.4666 | 105000 | 7.3969 | 
| 1.4680 | 105100 | 7.4001 | 
| 1.4694 | 105200 | 7.3543 | 
| 1.4708 | 105300 | 7.4355 | 
| 1.4721 | 105400 | 7.3844 | 
| 1.4735 | 105500 | 7.3793 | 
| 1.4749 | 105600 | 7.3478 | 
| 1.4763 | 105700 | 7.307 | 
| 1.4777 | 105800 | 7.3224 | 
| 1.4791 | 105900 | 7.3461 | 
| 1.4805 | 106000 | 7.3312 | 
| 1.4819 | 106100 | 7.3633 | 
| 1.4833 | 106200 | 7.3941 | 
| 1.4847 | 106300 | 7.3192 | 
| 1.4861 | 106400 | 7.3662 | 
| 1.4875 | 106500 | 7.3193 | 
| 1.4889 | 106600 | 7.4143 | 
| 1.4903 | 106700 | 7.3118 | 
| 1.4917 | 106800 | 7.3539 | 
| 1.4931 | 106900 | 7.3503 | 
| 1.4945 | 107000 | 7.4115 | 
| 1.4959 | 107100 | 7.3226 | 
| 1.4973 | 107200 | 7.3466 | 
| 1.4987 | 107300 | 7.3552 | 
| 1.5001 | 107400 | 7.3934 | 
| 1.5015 | 107500 | 7.3568 | 
| 1.5029 | 107600 | 7.3349 | 
| 1.5043 | 107700 | 7.3725 | 
| 1.5057 | 107800 | 7.366 | 
| 1.5071 | 107900 | 7.4261 | 
| 1.5085 | 108000 | 7.3676 | 
| 1.5099 | 108100 | 7.3846 | 
| 1.5113 | 108200 | 7.3198 | 
| 1.5127 | 108300 | 7.4015 | 
| 1.5141 | 108400 | 7.3463 | 
| 1.5154 | 108500 | 7.3471 | 
| 1.5168 | 108600 | 7.3487 | 
| 1.5182 | 108700 | 7.3852 | 
| 1.5196 | 108800 | 7.4031 | 
| 1.5210 | 108900 | 7.3399 | 
| 1.5224 | 109000 | 7.4266 | 
| 1.5238 | 109100 | 7.3765 | 
| 1.5252 | 109200 | 7.3603 | 
| 1.5266 | 109300 | 7.3121 | 
| 1.5280 | 109400 | 7.3581 | 
| 1.5294 | 109500 | 7.3258 | 
| 1.5308 | 109600 | 7.3347 | 
| 1.5322 | 109700 | 7.3783 | 
| 1.5336 | 109800 | 7.3532 | 
| 1.5350 | 109900 | 7.3507 | 
| 1.5364 | 110000 | 7.3322 | 
| 1.5378 | 110100 | 7.3451 | 
| 1.5392 | 110200 | 7.3739 | 
| 1.5406 | 110300 | 7.3358 | 
| 1.5420 | 110400 | 7.338 | 
| 1.5434 | 110500 | 7.314 | 
| 1.5448 | 110600 | 7.3417 | 
| 1.5462 | 110700 | 7.322 | 
| 1.5476 | 110800 | 7.3636 | 
| 1.5490 | 110900 | 7.3447 | 
| 1.5504 | 111000 | 7.3611 | 
| 1.5518 | 111100 | 7.3661 | 
| 1.5532 | 111200 | 7.3952 | 
| 1.5546 | 111300 | 7.3853 | 
| 1.5560 | 111400 | 7.3561 | 
| 1.5573 | 111500 | 7.3609 | 
| 1.5587 | 111600 | 7.3485 | 
| 1.5601 | 111700 | 7.3367 | 
| 1.5615 | 111800 | 7.3127 | 
| 1.5629 | 111900 | 7.3783 | 
| 1.5643 | 112000 | 7.3195 | 
| 1.5657 | 112100 | 7.399 | 
| 1.5671 | 112200 | 7.3744 | 
| 1.5685 | 112300 | 7.351 | 
| 1.5699 | 112400 | 7.3392 | 
| 1.5713 | 112500 | 7.3751 | 
| 1.5727 | 112600 | 7.3669 | 
| 1.5741 | 112700 | 7.3052 | 
| 1.5755 | 112800 | 7.2865 | 
| 1.5769 | 112900 | 7.2755 | 
| 1.5783 | 113000 | 7.3691 | 
| 1.5797 | 113100 | 7.3375 | 
| 1.5811 | 113200 | 7.3688 | 
| 1.5825 | 113300 | 7.2989 | 
| 1.5839 | 113400 | 7.4042 | 
| 1.5853 | 113500 | 7.3364 | 
| 1.5867 | 113600 | 7.3106 | 
| 1.5881 | 113700 | 7.3385 | 
| 1.5895 | 113800 | 7.4001 | 
| 1.5909 | 113900 | 7.3243 | 
| 1.5923 | 114000 | 7.3427 | 
| 1.5937 | 114100 | 7.3646 | 
| 1.5951 | 114200 | 7.3357 | 
| 1.5965 | 114300 | 7.3302 | 
| 1.5979 | 114400 | 7.3074 | 
| 1.5993 | 114500 | 7.3873 | 
| 1.6006 | 114600 | 7.3812 | 
| 1.6020 | 114700 | 7.3475 | 
| 1.6034 | 114800 | 7.3356 | 
| 1.6048 | 114900 | 7.3408 | 
| 1.6062 | 115000 | 7.3533 | 
| 1.6076 | 115100 | 7.3956 | 
| 1.6090 | 115200 | 7.3647 | 
| 1.6104 | 115300 | 7.3375 | 
| 1.6118 | 115400 | 7.2829 | 
| 1.6132 | 115500 | 7.3433 | 
| 1.6146 | 115600 | 7.4173 | 
| 1.6160 | 115700 | 7.3286 | 
| 1.6174 | 115800 | 7.3041 | 
| 1.6188 | 115900 | 7.3752 | 
| 1.6202 | 116000 | 7.3558 | 
| 1.6216 | 116100 | 7.3218 | 
| 1.6230 | 116200 | 7.3603 | 
| 1.6244 | 116300 | 7.3036 | 
| 1.6258 | 116400 | 7.3836 | 
| 1.6272 | 116500 | 7.3017 | 
| 1.6286 | 116600 | 7.3106 | 
| 1.6300 | 116700 | 7.3752 | 
| 1.6314 | 116800 | 7.3414 | 
| 1.6328 | 116900 | 7.391 | 
| 1.6342 | 117000 | 7.3658 | 
| 1.6356 | 117100 | 7.3149 | 
| 1.6370 | 117200 | 7.3572 | 
| 1.6384 | 117300 | 7.325 | 
| 1.6398 | 117400 | 7.3126 | 
| 1.6412 | 117500 | 7.3453 | 
| 1.6425 | 117600 | 7.3882 | 
| 1.6439 | 117700 | 7.3486 | 
| 1.6453 | 117800 | 7.3454 | 
| 1.6467 | 117900 | 7.3751 | 
| 1.6481 | 118000 | 7.3227 | 
| 1.6495 | 118100 | 7.3157 | 
| 1.6509 | 118200 | 7.3357 | 
| 1.6523 | 118300 | 7.3274 | 
| 1.6537 | 118400 | 7.3359 | 
| 1.6551 | 118500 | 7.3727 | 
| 1.6565 | 118600 | 7.2998 | 
| 1.6579 | 118700 | 7.3407 | 
| 1.6593 | 118800 | 7.3188 | 
| 1.6607 | 118900 | 7.3848 | 
| 1.6621 | 119000 | 7.3266 | 
| 1.6635 | 119100 | 7.3251 | 
| 1.6649 | 119200 | 7.3311 | 
| 1.6663 | 119300 | 7.3371 | 
| 1.6677 | 119400 | 7.3379 | 
| 1.6691 | 119500 | 7.3376 | 
| 1.6705 | 119600 | 7.3188 | 
| 1.6719 | 119700 | 7.3207 | 
| 1.6733 | 119800 | 7.3887 | 
| 1.6747 | 119900 | 7.3701 | 
| 1.6761 | 120000 | 7.3286 | 
| 1.6775 | 120100 | 7.342 | 
| 1.6789 | 120200 | 7.3573 | 
| 1.6803 | 120300 | 7.3197 | 
| 1.6817 | 120400 | 7.2984 | 
| 1.6831 | 120500 | 7.2911 | 
| 1.6845 | 120600 | 7.3144 | 
| 1.6858 | 120700 | 7.3535 | 
| 1.6872 | 120800 | 7.339 | 
| 1.6886 | 120900 | 7.358 | 
| 1.6900 | 121000 | 7.3328 | 
| 1.6914 | 121100 | 7.3226 | 
| 1.6928 | 121200 | 7.3113 | 
| 1.6942 | 121300 | 7.326 | 
| 1.6956 | 121400 | 7.3151 | 
| 1.6970 | 121500 | 7.3797 | 
| 1.6984 | 121600 | 7.3192 | 
| 1.6998 | 121700 | 7.3442 | 
| 1.7012 | 121800 | 7.3632 | 
| 1.7026 | 121900 | 7.2886 | 
| 1.7040 | 122000 | 7.3824 | 
| 1.7054 | 122100 | 7.3122 | 
| 1.7068 | 122200 | 7.3378 | 
| 1.7082 | 122300 | 7.3721 | 
| 1.7096 | 122400 | 7.2905 | 
| 1.7110 | 122500 | 7.3409 | 
| 1.7124 | 122600 | 7.3362 | 
| 1.7138 | 122700 | 7.3346 | 
| 1.7152 | 122800 | 7.323 | 
| 1.7166 | 122900 | 7.3928 | 
| 1.7180 | 123000 | 7.2963 | 
| 1.7194 | 123100 | 7.3591 | 
| 1.7208 | 123200 | 7.3338 | 
| 1.7222 | 123300 | 7.3551 | 
| 1.7236 | 123400 | 7.2956 | 
| 1.7250 | 123500 | 7.3236 | 
| 1.7264 | 123600 | 7.2921 | 
| 1.7278 | 123700 | 7.3118 | 
| 1.7291 | 123800 | 7.4146 | 
| 1.7305 | 123900 | 7.3321 | 
| 1.7319 | 124000 | 7.3529 | 
| 1.7333 | 124100 | 7.3409 | 
| 1.7347 | 124200 | 7.3837 | 
| 1.7361 | 124300 | 7.3289 | 
| 1.7375 | 124400 | 7.3522 | 
| 1.7389 | 124500 | 7.3246 | 
| 1.7403 | 124600 | 7.3455 | 
| 1.7417 | 124700 | 7.3232 | 
| 1.7431 | 124800 | 7.3793 | 
| 1.7445 | 124900 | 7.2792 | 
| 1.7459 | 125000 | 7.3081 | 
| 1.7473 | 125100 | 7.3441 | 
| 1.7487 | 125200 | 7.3586 | 
| 1.7501 | 125300 | 7.3084 | 
| 1.7515 | 125400 | 7.3783 | 
| 1.7529 | 125500 | 7.303 | 
| 1.7543 | 125600 | 7.3268 | 
| 1.7557 | 125700 | 7.3372 | 
| 1.7571 | 125800 | 7.3209 | 
| 1.7585 | 125900 | 7.2818 | 
| 1.7599 | 126000 | 7.3103 | 
| 1.7613 | 126100 | 7.3891 | 
| 1.7627 | 126200 | 7.3761 | 
| 1.7641 | 126300 | 7.3608 | 
| 1.7655 | 126400 | 7.3872 | 
| 1.7669 | 126500 | 7.3302 | 
| 1.7683 | 126600 | 7.3309 | 
| 1.7697 | 126700 | 7.3192 | 
| 1.7710 | 126800 | 7.3174 | 
| 1.7724 | 126900 | 7.3535 | 
| 1.7738 | 127000 | 7.2949 | 
| 1.7752 | 127100 | 7.2946 | 
| 1.7766 | 127200 | 7.3564 | 
| 1.7780 | 127300 | 7.3119 | 
| 1.7794 | 127400 | 7.3449 | 
| 1.7808 | 127500 | 7.3312 | 
| 1.7822 | 127600 | 7.2877 | 
| 1.7836 | 127700 | 7.3446 | 
| 1.7850 | 127800 | 7.3816 | 
| 1.7864 | 127900 | 7.2985 | 
| 1.7878 | 128000 | 7.333 | 
| 1.7892 | 128100 | 7.3868 | 
| 1.7906 | 128200 | 7.3086 | 
| 1.7920 | 128300 | 7.3502 | 
| 1.7934 | 128400 | 7.321 | 
| 1.7948 | 128500 | 7.2932 | 
| 1.7962 | 128600 | 7.3494 | 
| 1.7976 | 128700 | 7.3729 | 
| 1.7990 | 128800 | 7.3541 | 
| 1.8004 | 128900 | 7.3401 | 
| 1.8018 | 129000 | 7.3247 | 
| 1.8032 | 129100 | 7.3194 | 
| 1.8046 | 129200 | 7.3274 | 
| 1.8060 | 129300 | 7.3815 | 
| 1.8074 | 129400 | 7.3108 | 
| 1.8088 | 129500 | 7.375 | 
| 1.8102 | 129600 | 7.3132 | 
| 1.8116 | 129700 | 7.3787 | 
| 1.8130 | 129800 | 7.2769 | 
| 1.8143 | 129900 | 7.2828 | 
| 1.8157 | 130000 | 7.2993 | 
| 1.8171 | 130100 | 7.3093 | 
| 1.8185 | 130200 | 7.3386 | 
| 1.8199 | 130300 | 7.2818 | 
| 1.8213 | 130400 | 7.3224 | 
| 1.8227 | 130500 | 7.286 | 
| 1.8241 | 130600 | 7.2744 | 
| 1.8255 | 130700 | 7.3759 | 
| 1.8269 | 130800 | 7.3489 | 
| 1.8283 | 130900 | 7.3509 | 
| 1.8297 | 131000 | 7.2824 | 
| 1.8311 | 131100 | 7.3319 | 
| 1.8325 | 131200 | 7.3786 | 
| 1.8339 | 131300 | 7.3119 | 
| 1.8353 | 131400 | 7.3332 | 
| 1.8367 | 131500 | 7.3027 | 
| 1.8381 | 131600 | 7.4188 | 
| 1.8395 | 131700 | 7.3888 | 
| 1.8409 | 131800 | 7.3368 | 
| 1.8423 | 131900 | 7.3144 | 
| 1.8437 | 132000 | 7.3694 | 
| 1.8451 | 132100 | 7.347 | 
| 1.8465 | 132200 | 7.3107 | 
| 1.8479 | 132300 | 7.3205 | 
| 1.8493 | 132400 | 7.3379 | 
| 1.8507 | 132500 | 7.311 | 
| 1.8521 | 132600 | 7.3608 | 
| 1.8535 | 132700 | 7.3318 | 
| 1.8549 | 132800 | 7.3338 | 
| 1.8562 | 132900 | 7.3536 | 
| 1.8576 | 133000 | 7.3381 | 
| 1.8590 | 133100 | 7.2922 | 
| 1.8604 | 133200 | 7.3138 | 
| 1.8618 | 133300 | 7.3381 | 
| 1.8632 | 133400 | 7.3565 | 
| 1.8646 | 133500 | 7.3038 | 
| 1.8660 | 133600 | 7.2952 | 
| 1.8674 | 133700 | 7.3158 | 
| 1.8688 | 133800 | 7.3419 | 
| 1.8702 | 133900 | 7.3849 | 
| 1.8716 | 134000 | 7.3149 | 
| 1.8730 | 134100 | 7.2974 | 
| 1.8744 | 134200 | 7.3267 | 
| 1.8758 | 134300 | 7.3147 | 
| 1.8772 | 134400 | 7.3384 | 
| 1.8786 | 134500 | 7.3188 | 
| 1.8800 | 134600 | 7.3351 | 
| 1.8814 | 134700 | 7.3219 | 
| 1.8828 | 134800 | 7.3039 | 
| 1.8842 | 134900 | 7.3666 | 
| 1.8856 | 135000 | 7.3352 | 
| 1.8870 | 135100 | 7.4204 | 
| 1.8884 | 135200 | 7.3394 | 
| 1.8898 | 135300 | 7.3418 | 
| 1.8912 | 135400 | 7.3613 | 
| 1.8926 | 135500 | 7.3244 | 
| 1.8940 | 135600 | 7.358 | 
| 1.8954 | 135700 | 7.2659 | 
| 1.8968 | 135800 | 7.3035 | 
| 1.8982 | 135900 | 7.3833 | 
| 1.8995 | 136000 | 7.3343 | 
| 1.9009 | 136100 | 7.2412 | 
| 1.9023 | 136200 | 7.3243 | 
| 1.9037 | 136300 | 7.2633 | 
| 1.9051 | 136400 | 7.354 | 
| 1.9065 | 136500 | 7.3549 | 
| 1.9079 | 136600 | 7.3155 | 
| 1.9093 | 136700 | 7.329 | 
| 1.9107 | 136800 | 7.3524 | 
| 1.9121 | 136900 | 7.2965 | 
| 1.9135 | 137000 | 7.3498 | 
| 1.9149 | 137100 | 7.3346 | 
| 1.9163 | 137200 | 7.3336 | 
| 1.9177 | 137300 | 7.3202 | 
| 1.9191 | 137400 | 7.3205 | 
| 1.9205 | 137500 | 7.3243 | 
| 1.9219 | 137600 | 7.2771 | 
| 1.9233 | 137700 | 7.3517 | 
| 1.9247 | 137800 | 7.3368 | 
| 1.9261 | 137900 | 7.3492 | 
| 1.9275 | 138000 | 7.346 | 
| 1.9289 | 138100 | 7.2797 | 
| 1.9303 | 138200 | 7.3126 | 
| 1.9317 | 138300 | 7.3935 | 
| 1.9331 | 138400 | 7.3713 | 
| 1.9345 | 138500 | 7.3447 | 
| 1.9359 | 138600 | 7.305 | 
| 1.9373 | 138700 | 7.3616 | 
| 1.9387 | 138800 | 7.3254 | 
| 1.9401 | 138900 | 7.3129 | 
| 1.9414 | 139000 | 7.3376 | 
| 1.9428 | 139100 | 7.2986 | 
| 1.9442 | 139200 | 7.2991 | 
| 1.9456 | 139300 | 7.3564 | 
| 1.9470 | 139400 | 7.3366 | 
| 1.9484 | 139500 | 7.367 | 
| 1.9498 | 139600 | 7.3233 | 
| 1.9512 | 139700 | 7.3219 | 
| 1.9526 | 139800 | 7.3252 | 
| 1.9540 | 139900 | 7.2752 | 
| 1.9554 | 140000 | 7.3207 | 
| 1.9568 | 140100 | 7.3204 | 
| 1.9582 | 140200 | 7.2825 | 
| 1.9596 | 140300 | 7.2894 | 
| 1.9610 | 140400 | 7.3105 | 
| 1.9624 | 140500 | 7.3736 | 
| 1.9638 | 140600 | 7.3018 | 
| 1.9652 | 140700 | 7.3203 | 
| 1.9666 | 140800 | 7.3091 | 
| 1.9680 | 140900 | 7.407 | 
| 1.9694 | 141000 | 7.3363 | 
| 1.9708 | 141100 | 7.4118 | 
| 1.9722 | 141200 | 7.35 | 
| 1.9736 | 141300 | 7.3229 | 
| 1.9750 | 141400 | 7.3778 | 
| 1.9764 | 141500 | 7.3308 | 
| 1.9778 | 141600 | 7.3342 | 
| 1.9792 | 141700 | 7.3161 | 
| 1.9806 | 141800 | 7.3345 | 
| 1.9820 | 141900 | 7.3556 | 
| 1.9834 | 142000 | 7.3832 | 
| 1.9847 | 142100 | 7.3374 | 
| 1.9861 | 142200 | 7.3003 | 
| 1.9875 | 142300 | 7.3323 | 
| 1.9889 | 142400 | 7.3312 | 
| 1.9903 | 142500 | 7.3292 | 
| 1.9917 | 142600 | 7.3439 | 
| 1.9931 | 142700 | 7.3177 | 
| 1.9945 | 142800 | 7.3478 | 
| 1.9959 | 142900 | 7.3035 | 
| 1.9973 | 143000 | 7.3 | 
| 1.9987 | 143100 | 7.3019 | 
Framework Versions
- Python: 3.12.3
 - Sentence Transformers: 5.1.0
 - Transformers: 4.55.4
 - PyTorch: 2.5.1+cu121
 - Accelerate: 1.10.1
 - Datasets: 4.0.0
 - Tokenizers: 0.21.4
 
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
    title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
    author={Su Jianlin},
    year={2022},
    month={Jan},
    url={https://kexue.fm/archives/8847},
}
- Downloads last month
 - 3
 
Model tree for KhaledReda/all-MiniLM-L6-v8-pair_score
Base model
sentence-transformers/all-MiniLM-L6-v2