Pop Art Style LoRA for FLUX.1 Kontext Model

This repository provides the Pop Art style LoRA adapter for the FLUX.1 Kontext Model. This LoRA is part of a collection of 20+ style LoRAs trained on high-quality paired data generated by GPT-4o from the OmniConsistency dataset.

Contributor: Tian YE & Song FEI, HKUST Guangzhou.

Style Showcase

Here are some examples of images generated using this style LoRA:

Pop Art Style Example Pop Art Style Example Pop Art Style Example Pop Art Style Example Pop Art Style Example Pop Art Style Example

Inference Example

from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
import torch

# Load the base pipeline
pipeline = FluxKontextPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Kontext-dev", 
    torch_dtype=torch.bfloat16
).to('cuda')

# Load the LoRA adapter for the Pop Art style directly from the Hub
pipeline.load_lora_weights("Kontext-Style/Pop_Art_lora", weight_name="Pop_Art_lora_weights.safetensors", adapter_name="lora")
pipeline.set_adapters(["lora"], adapter_weights=[1])

# Load a source image (you can use any image)
image = load_image("https://huggingface.co/datasets/black-forest-labs/kontext-bench/resolve/main/test/images/0003.jpg").resize((1024, 1024))

# Prepare the prompt
# The style_name is used in the prompt and for the output filename.
style_name = "Pop Art"
prompt = f"Turn this image into the Pop_Art style."

# Run inference
result_image = pipeline(
    image=image, 
    prompt=prompt, 
    height=1024, 
    width=1024, 
    num_inference_steps=24
).images[0]

# Save the result
output_filename = f"{style_name.replace(' ', '_')}.png"
result_image.save(output_filename)

print(f"Image saved as {output_filename}")

Feel free to open an issue or contact us for feedback or collaboration!

Downloads last month
110
Inference Providers NEW

Model tree for Kontext-Style/Pop_Art_lora

Adapter
(123)
this model