Hal_videberta-base_finetuned
This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.8824
- Accuracy: 0.6907
- F1: 0.6907
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|---|---|---|---|---|---|
| 1.104 | 1.0 | 350 | 1.0995 | 0.3493 | 0.3493 |
| 1.1055 | 2.0 | 700 | 1.0982 | 0.3493 | 0.3493 |
| 1.0983 | 3.0 | 1050 | 1.0992 | 0.35 | 0.35 |
| 1.0974 | 4.0 | 1400 | 1.0983 | 0.35 | 0.35 |
| 1.0959 | 5.0 | 1750 | 1.0954 | 0.3507 | 0.3507 |
| 0.834 | 6.0 | 2100 | 0.8176 | 0.6471 | 0.6471 |
| 0.7454 | 7.0 | 2450 | 0.8176 | 0.6571 | 0.6571 |
| 0.7321 | 8.0 | 2800 | 0.7939 | 0.6693 | 0.6693 |
| 0.6003 | 9.0 | 3150 | 0.8458 | 0.6657 | 0.6657 |
| 0.602 | 10.0 | 3500 | 0.8261 | 0.6821 | 0.6821 |
| 0.4936 | 11.0 | 3850 | 0.9280 | 0.6629 | 0.6629 |
| 0.4742 | 12.0 | 4200 | 0.8824 | 0.6907 | 0.6907 |
| 0.452 | 13.0 | 4550 | 1.0194 | 0.6714 | 0.6714 |
| 0.3957 | 14.0 | 4900 | 1.0482 | 0.6657 | 0.6657 |
| 0.4032 | 15.0 | 5250 | 1.0783 | 0.6686 | 0.6686 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.6.0+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- -
Model tree for Kuongan/Hal_videberta-base_finetuned
Base model
Fsoft-AIC/videberta-base