Hal_videberta-base_finetuned

This model is a fine-tuned version of Fsoft-AIC/videberta-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8824
  • Accuracy: 0.6907
  • F1: 0.6907

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.104 1.0 350 1.0995 0.3493 0.3493
1.1055 2.0 700 1.0982 0.3493 0.3493
1.0983 3.0 1050 1.0992 0.35 0.35
1.0974 4.0 1400 1.0983 0.35 0.35
1.0959 5.0 1750 1.0954 0.3507 0.3507
0.834 6.0 2100 0.8176 0.6471 0.6471
0.7454 7.0 2450 0.8176 0.6571 0.6571
0.7321 8.0 2800 0.7939 0.6693 0.6693
0.6003 9.0 3150 0.8458 0.6657 0.6657
0.602 10.0 3500 0.8261 0.6821 0.6821
0.4936 11.0 3850 0.9280 0.6629 0.6629
0.4742 12.0 4200 0.8824 0.6907 0.6907
0.452 13.0 4550 1.0194 0.6714 0.6714
0.3957 14.0 4900 1.0482 0.6657 0.6657
0.4032 15.0 5250 1.0783 0.6686 0.6686

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.6.0+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
-
Safetensors
Model size
0.2B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for Kuongan/Hal_videberta-base_finetuned

Finetuned
(15)
this model