Introduction
This repository contains the efficient GUI grounding model, UI-R1-E-3B, presented in UI-R1: Enhancing Action Prediction of GUI Agents by Reinforcement Learning.
Project page: https://github.com/lll6gg/UI-R1
Old version: UI-R1-3B
Benchmark 1: ScreenSpotV2
ScreenSpotV2 | inference mode | Mobile-T | Mobile-I | Desktop-T | Desktop-I | Web-T | Web-I | Avg↑ / Len↓ |
---|---|---|---|---|---|---|---|---|
OS-ATLAS-7B | w/o thinking | 95.2 | 75.8 | 90.7 | 63.6 | 90.6 | 77.3 | 84.1 / |
UI-TARS-7B | w/o thinking | 95.2 | 79.1 | 90.7 | 68.6 | 90.6 | 78.3 | 84.7 / |
UI-R1-3B (v1) | w/ thinking | 96.2 | 84.3 | 92.3 | 63.6 | 89.2 | 75.4 | 85.4 / 67 |
GUI-R1-3B | w/ thinking | 97.6 | 78.2 | 94.3 | 64.3 | 91.0 | 72.4 | 85.0 / 80 |
UI-R1-3B (v2) | w/ thinking | 97.6 | 79.6 | 92.3 | 67.9 | 88.9 | 77.8 | 85.8 / 60 |
UI-R1-E-3B | w/o thinking | 98.2 | 83.9 | 94.8 | 75.0 | 93.2 | 83.7 | 89.5 / 28 |
Benchmark 2: ScreenSpot-Pro
ScreenSpot-Pro | inference mode | Average Length↓ | Average Accuracy↑ |
---|---|---|---|
UGround-7B | w/o thinking | - | 16.5 |
OS-ATLAS-7B | w/o thinking | - | 18.9 |
UI-R1-3B (v1) | w/ thinking | 102 | 17.8 |
GUI-R1-3B | w/ thinking | 114 | 26.6 |
UI-R1-3B (v2) | w/ thinking | 129 | 29.8 |
UI-R1-E-3B | w/o thinking | 28 | 33.5 |
Leaderboard: UI-I2E-Bench
Model | ScreenSpot | UI-I2E-Bench Avg | ScreenSpot-Pro | Avg |
---|---|---|---|---|
UI-TARS-1.5-7B | 88.1 | 73.2 | 42.2 | 67.8 |
Uground-V1-72B | 89.7 | 76.3 | 34.3 | 66.8 |
UI-TARS-72B | 88.4 | 73.7 | 38.1 | 66.7 |
UI-R1-E-3B | 89.2 | 69.1 | 33.5 | 63.9 |
Uground-V1-7B | 87.1 | 70.3 | 31.1 | 62.8 |
InfiGUI-R1 | 87.5 | 69.7 | 29.6 | 62.3 |
UI-TARS-7B | 89.5 | 61.4 | 35.7 | 62.2 |
Qwen2.5-VL-72B | 87.1 | 51.4 | 43.6 | 60.7 |
UI-I2E-VLM-7B | 82.5 | 69.5 | 23.6 | 58.5 |
UI-TARS-2B | 82.3 | 62 | 27.7 | 57.3 |
Qwen2.5-VL-7B | 84.7 | 53.8 | 29 | 55.8 |
OmniParser-V2 | 72 | 54.8 | 39.6 | 55.5 |
Uground-V1-2B | 78.8 | 57.4 | 26.6 | 54.3 |
OS-Atlas-7B | 82.5 | 58.6 | 18.9 | 53.3 |
UI-R1-3B | 83.3 | 58.5 | 17.8 | 53.2 |
UGround-7B | 74.1 | 54.2 | 16.5 | 48.3 |
UI-I2E-VLM-4B | 70.4 | 53.4 | 12.2 | 45.3 |
OmniParser | 73.9 | 53.1 | 8.3 | 45.1 |
ShowUI-2B | 76.8 | 41.5 | 7.7 | 42 |
Qwen2.5-VL-3B | 55.5 | 41.7 | 23.9 | 41.3 |
Aguvis-7B | 84.4 | 53.2 | 22.9 | 40.4 |
OS-Atlas-4B | 70.1 | 44.3 | 3.7 | 39.4 |
Qwen2-VL-7B | 42.6 | 48.7 | 1.6 | 31 |
Seeclick | 55.8 | 26.4 | 1.1 | 27.8 |
InternVL2-4B | 4.2 | 0.9 | 0.3 | 1.8 |
Evaluation Code for GUI Grounding
Generation for UI-R1-E-3B:
model = Qwen2_5_VLForConditionalGeneration.from_pretrained( args.model_path, torch_dtype=torch.bfloat16, attn_implementation="flash_attention_2", device_map="cpu", ) model = model.to(torch.device(rank)) model = model.eval() processor = AutoProcessor.from_pretrained(ori_processor_path) question_template = ( f"In this UI screenshot, I want to perform the command '{task_prompt}'.\n" "Please provide the action to perform (enumerate in ['click'])" "and the coordinate where the cursor is moved to(integer) if click is performed.\n" "Output the final answer in <answer> </answer> tags directly." "The output answer format should be as follows:\n" "<answer>[{'action': 'click', 'coordinate': [x, y]}]</answer>\n" "Please strictly follow the format." ) query = '<image>\n' + question_template messages = [ { "role": "user", "content": [ {"type": "image", "image": image_path} ] + [{"type": "text", "text": query}], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) generated_ids = model.generate(**inputs, max_new_tokens=1024) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] response = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) response = response[0] pred_coord, _ = extract_coord(response)
Rescale the predicted coordinate according to the image resize
image = Image.open(image_path) origin_width, origin_height = image.size resized_height,resized_width = smart_resize(origin_height,origin_width,max_pixels=12845056) scale_x = origin_width / resized_width scale_y = origin_height / resized_height pred_coord[0] = int(pred_coord[0] * scale_x) pred_coord[1] = int(pred_coord[1] * scale_y)
Function smart_resize is from Qwen2VL:
import math def smart_resize( height: int, width: int, factor: int = 28, min_pixels: int = 56 * 56, max_pixels: int = 14 * 14 * 4 * 1280 ): """Rescales the image so that the following conditions are met: 1. Both dimensions (height and width) are divisible by 'factor'. 2. The total number of pixels is within the range ['min_pixels', 'max_pixels']. 3. The aspect ratio of the image is maintained as closely as possible. """ if height < factor or width < factor: raise ValueError(f"height:{height} or width:{width} must be larger than factor:{factor}") elif max(height, width) / min(height, width) > 200: raise ValueError( f"absolute aspect ratio must be smaller than 200, got {max(height, width) / min(height, width)}" ) h_bar = round(height / factor) * factor w_bar = round(width / factor) * factor if h_bar * w_bar > max_pixels: beta = math.sqrt((height * width) / max_pixels) h_bar = math.floor(height / beta / factor) * factor w_bar = math.floor(width / beta / factor) * factor elif h_bar * w_bar < min_pixels: beta = math.sqrt(min_pixels / (height * width)) h_bar = math.ceil(height * beta / factor) * factor w_bar = math.ceil(width * beta / factor) * factor return h_bar, w_bar
- Downloads last month
- 962
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for LZXzju/Qwen2.5-VL-3B-UI-R1-E
Base model
Qwen/Qwen2.5-VL-3B-Instruct